File size: 2,931 Bytes
841bef5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
# --------------------------------------------------------
# InternVL
# Copyright (c) 2024 OpenGVLab
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------

import math

import torch
from internvl.model.internvl_chat import InternVLChatConfig, InternVLChatModel
from transformers import AutoTokenizer


def split_model(num_layers, vit_alpha=0.5):
    device_map = {}
    world_size = torch.cuda.device_count()
    # Since the first GPU will be used for ViT, treat it as half a GPU.
    num_layers_per_gpu = math.ceil(num_layers / (world_size - vit_alpha))
    num_layers_per_gpu = [num_layers_per_gpu] * world_size
    num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * (1 - vit_alpha))
    layer_cnt = 0
    for i, num_layer in enumerate(num_layers_per_gpu):
        for j in range(num_layer):
            device_map[f'language_model.model.layers.{layer_cnt}'] = i
            layer_cnt += 1
    device_map['vision_model'] = 0
    device_map['mlp1'] = 0
    device_map['language_model.model.tok_embeddings'] = 0
    device_map['language_model.model.embed_tokens'] = 0
    device_map['language_model.output'] = 0
    device_map['language_model.model.norm'] = 0
    device_map['language_model.lm_head'] = 0
    device_map[f'language_model.model.layers.{num_layers - 1}'] = 0

    return device_map


def load_model_and_tokenizer(args):
    if args.auto:
        config = InternVLChatConfig.from_pretrained(args.checkpoint)
        num_hidden_layers = config.llm_config.num_hidden_layers
        device_map = split_model(num_hidden_layers)
    kwargs = {'device_map': device_map} if args.auto else {}
    tokenizer = AutoTokenizer.from_pretrained(args.checkpoint, trust_remote_code=True, use_fast=False)
    model = InternVLChatModel.from_pretrained(
        args.checkpoint, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16,
        load_in_8bit=args.load_in_8bit, load_in_4bit=args.load_in_4bit, **kwargs).eval()
    if not args.load_in_8bit and not args.load_in_4bit and not args.auto:
        model = model.cuda()
    return model, tokenizer

def load_model_and_tokenizer_customed(args):
    if args.auto:
        config = InternVLChatConfig.from_pretrained(args.checkpoint)
        num_hidden_layers = config.llm_config.num_hidden_layers
        device_map = split_model(num_hidden_layers)
    kwargs = {'device_map': device_map} if args.auto else {}
    tokenizer = AutoTokenizer.from_pretrained(args.checkpoint, trust_remote_code=True, use_fast=False)
    model = InternVLChatModel.from_pretrained(
        args.checkpoint, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16,
        load_in_8bit=args.load_in_8bit, load_in_4bit=args.load_in_4bit, **kwargs).eval()
    if not args.load_in_8bit and not args.load_in_4bit and not args.auto:
        del model.language_model.model.layers
        del model.language_model.output
    return model, tokenizer