Spaces:
Running
on
Zero
Running
on
Zero
File size: 36,311 Bytes
841bef5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 |
# --------------------------------------------------------
# InternVL
# Copyright (c) 2024 OpenGVLab
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
import io
import matplotlib.pyplot as plt
from transformers.trainer_pt_utils import LabelSmoother
IGNORE_TOKEN_ID = LabelSmoother.ignore_index
import os
import random
import re
from collections import Counter
from typing import Dict
import cv2
import imageio
import numpy as np
import torch
import torch.nn.functional as F
import torchvision.transforms as T
import transformers
from decord import VideoReader
from internvl.conversation import get_conv_template
from PIL import Image
from torch.utils.data import ConcatDataset, WeightedRandomSampler
from torchvision.transforms.functional import InterpolationMode
from .constants import (CLIP_MEAN, CLIP_STD, IMAGENET_MEAN, IMAGENET_STD,
IMG_CONTEXT_TOKEN, IMG_END_TOKEN, IMG_START_TOKEN,
SIGLIP_MEAN, SIGLIP_STD)
try:
from petrel_client.client import Client
from petrel_client.common.config import Config
except ImportError as E:
print('petrel_client is not installed. If you read data locally instead of from ceph, ignore it.')
import sys
def calculate_ngram_repetition(text, n):
words = text.split()
ngrams = [tuple(words[i:i+n]) for i in range(len(words)-n+1)]
ngram_counts = Counter(ngrams)
total_ngrams = len(ngrams)
repeated_ngrams = sum(1 for count in ngram_counts.values() if count > 1)
return repeated_ngrams / total_ngrams if total_ngrams > 0 else 0
def check_conversations_repetition(conversations, repeat_threshold=0.4, ngram=10):
for conversation in conversations:
if conversation['from'] == 'gpt':
model_answer = conversation['value']
repeat_ratio = calculate_ngram_repetition(model_answer, ngram)
if repeat_ratio > repeat_threshold:
raise Exception
def get_frame_indices(num_frames, vlen, sample='rand', fix_start=None, input_fps=1, max_num_frames=-1):
if sample in ['rand', 'middle']: # uniform sampling
acc_samples = min(num_frames, vlen)
# split the video into `acc_samples` intervals, and sample from each interval.
intervals = np.linspace(start=0, stop=vlen, num=acc_samples + 1).astype(int)
ranges = []
for idx, interv in enumerate(intervals[:-1]):
ranges.append((interv, intervals[idx + 1] - 1))
if sample == 'rand':
try:
frame_indices = [random.choice(range(x[0], x[1])) for x in ranges]
except:
frame_indices = np.random.permutation(vlen)[:acc_samples]
frame_indices.sort()
frame_indices = list(frame_indices)
elif fix_start is not None:
frame_indices = [x[0] + fix_start for x in ranges]
elif sample == 'middle':
frame_indices = [(x[0] + x[1]) // 2 for x in ranges]
else:
raise NotImplementedError
if len(frame_indices) < num_frames: # padded with last frame
padded_frame_indices = [frame_indices[-1]] * num_frames
padded_frame_indices[:len(frame_indices)] = frame_indices
frame_indices = padded_frame_indices
elif 'fps' in sample: # fps0.5, sequentially sample frames at 0.5 fps
output_fps = float(sample[3:])
duration = float(vlen) / input_fps
delta = 1 / output_fps # gap between frames, this is also the clip length each frame represents
frame_seconds = np.arange(0 + delta / 2, duration + delta / 2, delta)
frame_indices = np.around(frame_seconds * input_fps).astype(int)
frame_indices = [e for e in frame_indices if e < vlen]
if max_num_frames > 0 and len(frame_indices) > max_num_frames:
frame_indices = frame_indices[:max_num_frames]
# frame_indices = np.linspace(0 + delta / 2, duration + delta / 2, endpoint=False, num=max_num_frames)
else:
raise ValueError
return frame_indices
def read_frames_gif(
video_path, num_frames, sample='rand', fix_start=None,
client=None, min_num_frames=4
):
if 's3://' in video_path:
video_bytes = client.get(video_path)
gif = imageio.get_reader(io.BytesIO(video_bytes))
else:
gif = imageio.get_reader(video_path)
vlen = len(gif)
t_num_frames = np.random.randint(min_num_frames, num_frames + 1)
frame_indices = get_frame_indices(
t_num_frames, vlen, sample=sample, fix_start=fix_start
)
frames = []
for index, frame in enumerate(gif):
if index in frame_indices:
frame = cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB).astype(np.uint8)
frame = Image.fromarray(frame)
frames.append(frame)
return frames
def read_frames_decord(
video_path, num_frames, sample='rand', fix_start=None,
client=None, clip=None, min_num_frames=4
):
if 's3://' in video_path:
video_bytes = client.get(video_path)
video_reader = VideoReader(io.BytesIO(video_bytes), num_threads=1)
else:
video_reader = VideoReader(video_path, num_threads=1)
vlen = len(video_reader)
fps = video_reader.get_avg_fps()
duration = vlen / float(fps)
if clip:
start, end = clip
duration = end - start
vlen = int(duration * fps)
start_index = int(start * fps)
# t_num_frames = min(max(int(duration * sample_fps), min_num_frames), num_frames)
t_num_frames = np.random.randint(min_num_frames, num_frames + 1)
frame_indices = get_frame_indices(
t_num_frames, vlen, sample=sample, fix_start=fix_start,
input_fps=fps
)
if clip:
frame_indices = [f + start_index for f in frame_indices]
frames = video_reader.get_batch(frame_indices).asnumpy() # (T, H, W, C), np.uint8
frames = [Image.fromarray(frames[i]) for i in range(frames.shape[0])]
return frames
def extract_frame_number(filename):
# Extract the numeric part from the filename using regular expressions
match = re.search(r'_(\d+).jpg$', filename)
return int(match.group(1)) if match else -1
def sort_frames(frame_paths):
# Extract filenames from each path and sort by their numeric part
return sorted(frame_paths, key=lambda x: extract_frame_number(os.path.basename(x)))
def read_frames_folder(
video_path, num_frames, sample='rand', fix_start=None,
client=None, clip=None, min_num_frames=4
):
if 's3://' in video_path:
image_list = sort_frames(client.list(video_path))
frames = []
for image in image_list:
fp = os.path.join(video_path, image)
frame = Image.open(io.BytesIO(client.get(fp)))
frames.append(frame)
else:
image_list = sort_frames(list(os.listdir(video_path)))
frames = []
for image in image_list:
fp = os.path.join(video_path, image)
frame = Image.open(fp).convert('RGB')
frames.append(frame)
vlen = len(frames)
t_num_frames = np.random.randint(min_num_frames, num_frames + 1)
if vlen > t_num_frames:
frame_indices = get_frame_indices(
t_num_frames, vlen, sample=sample, fix_start=fix_start
)
frames = [frames[i] for i in frame_indices]
return frames
class WeightedConcatDataset(ConcatDataset):
def __init__(self, datasets, weights):
super().__init__(datasets)
self.weights = torch.DoubleTensor(weights)
self.total_size = sum(len(d) for d in datasets)
self.sampler = WeightedRandomSampler(weights=self.weights, num_samples=self.total_size, replacement=True)
def __iter__(self):
return iter(self.sampler)
def __len__(self):
return self.total_size
def pil_loader(img_str):
buff = io.BytesIO(img_str)
img = Image.open(buff)
return img.convert('RGB')
class TCSLoader(object):
def __init__(self, conf_path, sc_config_key='sensecore'):
print(f'[TCSLoader] config_path: {conf_path}')
print('--> before Client(conf_path)')
self.client = Client(conf_path)
self.sc_config_key = sc_config_key
print('--> after Client(conf_path)')
def __call__(self, fn, image_type='image', max_num_frames=-1, min_num_frames=8, sample='rand', clip=None):
if image_type == 'image':
img_value_str = self.client.get(fn)
img = pil_loader(img_value_str)
return img
elif image_type == 'video':
if fn.endswith('/'):
frames = read_frames_folder(fn, num_frames=max_num_frames, min_num_frames=min_num_frames,
client=self.client, sample=sample)
elif fn.endswith('.gif'):
frames = read_frames_gif(fn, num_frames=max_num_frames, min_num_frames=min_num_frames,
client=self.client, sample=sample)
else:
frames = read_frames_decord(fn, num_frames=max_num_frames, min_num_frames=min_num_frames,
client=self.client, sample=sample, clip=clip)
return frames
def expand2square(pil_img, background_color):
width, height = pil_img.size
if width == height:
return pil_img
elif width > height:
result = Image.new(pil_img.mode, (width, width), background_color)
result.paste(pil_img, (0, (width - height) // 2))
return result
else:
result = Image.new(pil_img.mode, (height, height), background_color)
result.paste(pil_img, ((height - width) // 2, 0))
return result
def simulate_jpeg_degradation(quality):
def jpeg_degrade(img):
with io.BytesIO() as output:
img.convert('RGB').save(output, format='JPEG', quality=quality)
output.seek(0) # Move the reading cursor to the start of the stream
img_jpeg = Image.open(output).copy() # Use .copy() to make sure the image is loaded in memory
return img_jpeg
return jpeg_degrade
# Define the JPEG compression quality range, pre-create all JPEG compression functions
qualities = list(range(75, 101))
jpeg_degrade_functions = {quality: simulate_jpeg_degradation(quality) for quality in qualities}
def build_transform(is_train, input_size, pad2square=False, normalize_type='imagenet'):
if normalize_type == 'imagenet':
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
elif normalize_type == 'clip':
MEAN, STD = CLIP_MEAN, CLIP_STD
elif normalize_type == 'siglip':
MEAN, STD = SIGLIP_MEAN, SIGLIP_STD
else:
raise NotImplementedError
if is_train: # use data augumentation
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.RandomChoice([T.Lambda(jpeg_degrade_functions[quality]) for quality in qualities]),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=MEAN, std=STD)
])
else:
if pad2square is False: # now we use this transform function by default
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=MEAN, std=STD)
])
else:
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Lambda(lambda img: expand2square(img, tuple(int(x * 255) for x in MEAN))),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=MEAN, std=STD)
])
return transform
def preprocess(
template_name,
sources,
tokenizer: transformers.PreTrainedTokenizer,
num_image_token_list: list,
text_only: bool = False,
group_by_length: bool = False,
use_packed_ds: bool = False,
ds_name: str = None,
num_image: int = 1
) -> Dict:
conv = get_conv_template(template_name)
roles = {'human': conv.roles[0], 'gpt': conv.roles[1]}
# Apply prompt templates
conversations = []
for i, source in enumerate(sources):
if roles[source[0]['from']] != conv.roles[0]:
# Skip the first one if it is not from human
source = source[1:]
conv.messages = []
for j, sentence in enumerate(source):
role = roles[sentence['from']]
assert role == conv.roles[j % 2], f'{i}'
conv.append_message(role, sentence['value'])
conversations.append(conv.get_prompt())
if not text_only:
new_conversations = []
for conversation in conversations:
for i in range(num_image):
image_tokens = f'{IMG_START_TOKEN}{IMG_CONTEXT_TOKEN * num_image_token_list[i]}{IMG_END_TOKEN}'
conversation = conversation.replace('<image>', image_tokens, 1)
new_conversations.append(conversation)
conversations = new_conversations
# Tokenize conversations
input_ids = tokenizer(
conversations,
return_tensors='pt',
padding=False if group_by_length or use_packed_ds else 'max_length',
max_length=tokenizer.model_max_length,
truncation=True,
).input_ids
targets = input_ids.clone()
# assert conv.sep_style == SeparatorStyle.ADD_COLON_TWO
# Mask targets. Only compute loss on the assistant outputs.
sep = conv.sep + conv.roles[1] + ': '
for conversation, target in zip(conversations, targets):
total_len = int(target.ne(tokenizer.pad_token_id).sum())
turns = conversation.split(conv.sep2)
cur_len = 1
target[:cur_len] = IGNORE_TOKEN_ID
for i, turn in enumerate(turns):
if turn == '':
break
turn_len = len(tokenizer(turn).input_ids)
parts = turn.split(sep)
if len(parts) != 2:
break
parts[0] += sep
# "-2" is hardcoded for the Llama tokenizer to make the offset correct.
instruction_len = len(tokenizer(parts[0]).input_ids) - 2
if i != 0 and not tokenizer.legacy:
# The legacy and non-legacy modes handle special tokens differently
instruction_len -= 1
# Ignore the user instructions
target[cur_len: cur_len + instruction_len] = IGNORE_TOKEN_ID
cur_len += turn_len
if i != 0 and not tokenizer.legacy:
# The legacy and non-legacy modes handle special tokens differently
cur_len -= 1
target[cur_len:] = IGNORE_TOKEN_ID
if False: # Inspect and check the correctness of masking
z = target.clone()
z = torch.where(z == IGNORE_TOKEN_ID, tokenizer.unk_token_id, z)
logger.info(tokenizer.decode(z))
exit()
if cur_len < tokenizer.model_max_length:
if cur_len != total_len:
target[:] = IGNORE_TOKEN_ID
print(
f'WARNING: tokenization mismatch: {cur_len} vs. {total_len}.'
f' #turn = {len(turns) - 1}. (ignored). This dataset is {ds_name}.'
)
sys.stdout.flush()
return dict(
input_ids=input_ids,
labels=targets,
attention_mask=input_ids.ne(tokenizer.pad_token_id),
)
def preprocess_mpt(
template_name,
sources,
tokenizer: transformers.PreTrainedTokenizer,
num_image_token_list: list,
text_only: bool = False,
group_by_length: bool = False,
use_packed_ds: bool = False,
ds_name: str = None,
num_image: int = 1
) -> Dict:
conv = get_conv_template(template_name)
roles = {'human': conv.roles[0], 'gpt': conv.roles[1]}
# Apply prompt templates
conversations = []
for i, source in enumerate(sources):
if roles[source[0]['from']] != conv.roles[0]:
# Skip the first one if it is not from human
source = source[1:]
conv.messages = []
for j, sentence in enumerate(source):
role = roles[sentence['from']]
assert role == conv.roles[j % 2], f'{i}'
conv.append_message(role, sentence['value'])
conversations.append(conv.get_prompt())
if not text_only:
new_conversations = []
for conversation in conversations:
for i in range(num_image):
image_tokens = f'{IMG_START_TOKEN}{IMG_CONTEXT_TOKEN * num_image_token_list[i]}{IMG_END_TOKEN}'
conversation = conversation.replace('<image>', image_tokens, 1)
new_conversations.append(conversation)
conversations = new_conversations
# Tokenize conversations
input_ids = tokenizer(
conversations,
return_tensors='pt',
padding=False if group_by_length or use_packed_ds else 'max_length',
max_length=tokenizer.model_max_length,
truncation=True,
).input_ids
targets = input_ids.clone()
# Mask targets. Only compute loss on the assistant outputs.
sep = conv.sep + conv.roles[1] # <|im_end|><|im_start|>assistant\n
for conversation, target in zip(conversations, targets):
total_len = int(target.ne(tokenizer.pad_token_id).sum())
turns = conversation.split(conv.sep)
re_turns = [conv.sep.join(turns[:3])] # system + user + gpt
for conv_idx in range(3, len(turns), 2):
re_turns.append(conv.sep.join(turns[conv_idx:conv_idx + 2])) # user + gpt
cur_len = 0
target[:cur_len] = IGNORE_TOKEN_ID
for i, turn in enumerate(re_turns):
if turn == '':
break
turn_len = len(tokenizer(turn).input_ids) + 1
parts = turn.split(sep)
if len(parts) != 2:
break
parts[0] += sep
instruction_len = len(tokenizer(parts[0]).input_ids)
# Ignore the user instructions
target[cur_len: cur_len + instruction_len] = IGNORE_TOKEN_ID
# print(f'[question {i}]', tokenizer.decode(input_ids[:, cur_len: cur_len + instruction_len][0]))
# print(f'[answer {i}]', tokenizer.decode(input_ids[:, cur_len + instruction_len: cur_len + turn_len][0]))
# print(f'[label {i}]', target[cur_len + instruction_len: cur_len + turn_len])
cur_len += turn_len
target[cur_len:] = IGNORE_TOKEN_ID
if cur_len < tokenizer.model_max_length:
if cur_len != total_len:
target[:] = IGNORE_TOKEN_ID
print(
f'WARNING: tokenization mismatch: {cur_len} vs. {total_len}.'
f' #turn = {len(turns) - 1}. (ignored). This dataset is {ds_name}.'
)
sys.stdout.flush()
return dict(
input_ids=input_ids,
labels=targets,
attention_mask=input_ids.ne(tokenizer.pad_token_id),
)
def preprocess_phi3(
template_name,
sources,
tokenizer: transformers.PreTrainedTokenizer,
num_image_token_list: list,
text_only: bool = False,
group_by_length: bool = False,
use_packed_ds: bool = False,
ds_name: str = None,
num_image: int = 1
) -> Dict:
conv = get_conv_template(template_name)
roles = {'human': conv.roles[0], 'gpt': conv.roles[1]}
# Apply prompt templates
conversations = []
for i, source in enumerate(sources):
if roles[source[0]['from']] != conv.roles[0]:
# Skip the first one if it is not from human
source = source[1:]
conv.messages = []
for j, sentence in enumerate(source):
role = roles[sentence['from']]
assert role == conv.roles[j % 2], f'{i}'
conv.append_message(role, sentence['value'])
conversations.append(conv.get_prompt())
if not text_only:
new_conversations = []
for conversation in conversations:
for i in range(num_image):
image_tokens = f'{IMG_START_TOKEN}{IMG_CONTEXT_TOKEN * num_image_token_list[i]}{IMG_END_TOKEN}'
conversation = conversation.replace('<image>', image_tokens, 1)
new_conversations.append(conversation)
conversations = new_conversations
# Tokenize conversations
tokenizer.padding_side = 'right'
input_ids = tokenizer(
conversations,
return_tensors='pt',
padding=False if group_by_length or use_packed_ds else 'max_length',
max_length=tokenizer.model_max_length,
truncation=True,
).input_ids
targets = input_ids.clone()
# Mask targets. Only compute loss on the assistant outputs.
sep = conv.sep + conv.roles[1] # <|end|>\n<|assistant|>
for conversation, target in zip(conversations, targets):
total_len = int(target.ne(int(tokenizer.pad_token_id)).sum())
turns = conversation.split(conv.sep)
re_turns = [conv.sep.join(turns[:3])] # system + user + gpt
for conv_idx in range(3, len(turns), 2):
re_turns.append(conv.sep.join(turns[conv_idx:conv_idx + 2])) # user + gpt
cur_len = 1
target[:cur_len] = IGNORE_TOKEN_ID
endoftext_id = tokenizer.convert_tokens_to_ids('<|endoftext|>')
target[target == endoftext_id] = IGNORE_TOKEN_ID
for i, turn in enumerate(re_turns):
if turn == '':
break
if i == 0:
turn_len = len(tokenizer(turn).input_ids)
else:
turn_len = len(tokenizer(turn).input_ids) - 1
parts = turn.split(sep)
if len(parts) != 2:
break
parts[0] += sep
if i == 0:
instruction_len = len(tokenizer(parts[0]).input_ids) - 1
else:
instruction_len = len(tokenizer(parts[0]).input_ids) - 2
# Ignore the user instructions
target[cur_len: cur_len + instruction_len] = IGNORE_TOKEN_ID
# print(f'[question {i}]', tokenizer.decode(input_ids[:, cur_len: cur_len + instruction_len][0]))
# print(f'[answer {i}]', tokenizer.decode(input_ids[:, cur_len + instruction_len: cur_len + turn_len][0]))
# print(f'[label {i}]', target[cur_len + instruction_len: cur_len + turn_len])
cur_len += turn_len
target[cur_len:] = IGNORE_TOKEN_ID
if False: # Inspect and check the correctness of masking
z = target.clone()
z = torch.where(z == IGNORE_TOKEN_ID, tokenizer.unk_token_id, z)
print(repr(tokenizer.decode(z)))
if cur_len < tokenizer.model_max_length:
if cur_len != total_len:
target[:] = IGNORE_TOKEN_ID
print(
f'WARNING: tokenization mismatch: {cur_len} vs. {total_len}.'
f' #turn = {len(turns) - 1}. (ignored). This dataset is {ds_name}.'
)
sys.stdout.flush()
return dict(
input_ids=input_ids,
labels=targets,
attention_mask=input_ids.ne(tokenizer.pad_token_id),
)
def preprocess_internlm(
template_name,
sources,
tokenizer: transformers.PreTrainedTokenizer,
num_image_token_list: list,
text_only: bool = False,
group_by_length: bool = False,
use_packed_ds: bool = False,
ds_name: str = None,
num_image: int = 1
) -> Dict:
conv = get_conv_template(template_name)
roles = {'human': conv.roles[0], 'gpt': conv.roles[1]}
# Apply prompt templates
conversations = []
for i, source in enumerate(sources):
if roles[source[0]['from']] != conv.roles[0]:
# Skip the first one if it is not from human
source = source[1:]
conv.messages = []
for j, sentence in enumerate(source):
role = roles[sentence['from']]
assert role == conv.roles[j % 2], f'{i}'
sentence['value'] = sentence['value'].strip()
conv.append_message(role, sentence['value'])
conversations.append(conv.get_prompt())
if not text_only:
new_conversations = []
for conversation in conversations:
for i in range(num_image):
image_tokens = f'{IMG_START_TOKEN}{IMG_CONTEXT_TOKEN * num_image_token_list[i]}{IMG_END_TOKEN}'
conversation = conversation.replace('<image>', image_tokens, 1)
new_conversations.append(conversation)
conversations = new_conversations
# Tokenize conversations
input_ids = tokenizer(
conversations,
return_tensors='pt',
padding=False if group_by_length or use_packed_ds else 'max_length',
max_length=tokenizer.model_max_length,
truncation=True,
).input_ids
targets = input_ids.clone()
for conversation, target in zip(conversations, targets):
total_len = int(target.ne(tokenizer.pad_token_id).sum()) # 浦语里面 pad_token_id = eos_token_id
cur_len = 1
target[:cur_len] = IGNORE_TOKEN_ID # <s>
parts = conversation.split(conv.roles[1]) # [UNUSED_TOKEN_146]assistant\n
info = parts[0] + conv.roles[1]
temp_len = len(tokenizer(info).input_ids) - 1 # 去除tokenizer的<s>
target[cur_len: cur_len + temp_len] = IGNORE_TOKEN_ID
cur_len = cur_len + temp_len
for index in range(1, len(parts) - 1):
info = parts[index]
part1, part2 = info.split(conv.roles[0])
temp_len = len(tokenizer(part1).input_ids) - 1
cur_len = cur_len + temp_len
part = conv.roles[0] + part2 + conv.roles[1]
temp_len = len(tokenizer(part).input_ids) - 1
target[cur_len: cur_len + temp_len] = IGNORE_TOKEN_ID
cur_len = cur_len + temp_len
last_info = parts[-1]
temp_len = len(tokenizer(last_info).input_ids) - 1
cur_len = cur_len + temp_len
target[cur_len:] = IGNORE_TOKEN_ID
if False: # Inspect and check the correctness of masking
z = target.clone()
z = torch.where(z == IGNORE_TOKEN_ID, tokenizer.unk_token_id, z)
print(repr(tokenizer.decode(z)))
if cur_len < tokenizer.model_max_length:
if cur_len != total_len:
target[:] = IGNORE_TOKEN_ID
print(f'WARNING: tokenization mismatch: {cur_len} vs. {total_len}. This dataset is {ds_name}.')
sys.stdout.flush()
return dict(
input_ids=input_ids,
labels=targets,
attention_mask=input_ids.ne(tokenizer.pad_token_id),
)
def preprocess_internvl2_5(
template_name,
sources,
tokenizer: transformers.PreTrainedTokenizer,
num_image_token_list: list,
text_only: bool = False,
group_by_length: bool = False,
use_packed_ds: bool = False,
ds_name: str = None,
num_image: int = 1
) -> Dict:
assert len(sources) == 1, 'process only the first conversations'
conversations = sources[0]
if conversations[0]['from'] == 'system':
system_prompt = conversations[0]['value']
conversations = conversations[1:] # remove system prompt
else:
conv = get_conv_template(template_name)
system_prompt = conv.system_message
# system_prompt = None
if not text_only:
new_conversations = []
current_image_idx = 0
for conversation in conversations:
if conversation['from'] == 'human':
image_cnt = conversation['value'].count('<image>')
for i in range(image_cnt):
if current_image_idx == num_image:
break
image_tokens = f'{IMG_START_TOKEN}{IMG_CONTEXT_TOKEN * num_image_token_list[current_image_idx]}{IMG_END_TOKEN}'
conversation['value'] = conversation['value'].replace('<image>', image_tokens, 1)
current_image_idx += 1
new_conversations.append(conversation)
conversations = new_conversations
assert current_image_idx == num_image, f'{current_image_idx} != {num_image}'
batches, roles = [], []
if system_prompt is not None:
batches.append(f'<|im_start|>system\n{system_prompt}<|im_end|>\n')
roles.append('system')
for conversation in conversations:
if conversation['from'] == 'human':
batches.append(f'<|im_start|>user\n{conversation["value"]}<|im_end|>\n')
roles.append('human')
elif conversation['from'] == 'gpt':
batches.append(f'<|im_start|>assistant\n{conversation["value"]}<|im_end|>\n')
roles.append('gpt')
else:
raise NotImplementedError
add_bos_token = getattr(tokenizer, 'add_bos_token', False)
if add_bos_token: # for InternLM series
batches[0] = tokenizer.bos_token + batches[0]
# Tokenize conversations
input_ids = tokenizer(
batches,
return_tensors='np',
padding=False,
max_length=tokenizer.model_max_length,
truncation=False,
).input_ids
if add_bos_token: # for InternLM series
input_ids = [item[1:] for item in input_ids]
final_input_ids, final_targets = [], []
ignore_ids = tokenizer('<|im_start|>assistant\n', return_tensors='np').input_ids[0]
ignore_len = ignore_ids.shape[0] - 1 if add_bos_token else ignore_ids.shape[0]
for role, input_id in zip(roles, input_ids):
final_input_ids.append(input_id)
if role == 'system' or role == 'human':
final_targets.append(np.full(input_id.shape, IGNORE_TOKEN_ID)) # ignore
elif role == 'gpt':
target = input_id.copy()
target[:ignore_len] = IGNORE_TOKEN_ID # ignore loss for `<|im_start|>assistant\n`
target[-1:] = IGNORE_TOKEN_ID # ignore loss for `\n`
final_targets.append(target)
else:
raise NotImplementedError
input_ids = torch.tensor(np.concatenate(final_input_ids))[:tokenizer.model_max_length]
targets = torch.tensor(np.concatenate(final_targets))[:tokenizer.model_max_length]
padding = False if group_by_length or use_packed_ds else True
if padding:
current_length = input_ids.size(0)
padding_length = tokenizer.model_max_length - current_length
input_ids = F.pad(input_ids, (0, padding_length), value=tokenizer.pad_token_id)
targets = F.pad(targets, (0, padding_length), value=IGNORE_TOKEN_ID)
input_ids = input_ids.unsqueeze(0)
targets = targets.unsqueeze(0)
return dict(
input_ids=input_ids,
labels=targets,
attention_mask=input_ids.ne(tokenizer.pad_token_id),
)
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float('inf')
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
# print(f'width: {width}, height: {height}, best_ratio: {best_ratio}')
return best_ratio
def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False, return_ratio=False):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = set(
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
i * j <= max_num and i * j >= min_num)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size
)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
if return_ratio:
return processed_images, target_aspect_ratio
return processed_images
def dynamic_preprocess_mask(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False):
# import pdb
length, orig_height, orig_width = image.shape
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = set(
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
i * j <= max_num and i * j >= min_num)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
# print(target_aspect_ratio)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# resize the image
tensor_images = image.unsqueeze(1) # 添加一个维度作为单通道
# pdb.set_trace()
resized_images = F.interpolate(tensor_images, size=(target_height, target_width), mode='bilinear', align_corners=False) #(1792,1344)
resized_images = resized_images > 0
# print(resized_images.shape)
# 然后像 PIL 那样裁剪图像块
processed_images = []
for i in range(blocks):
top = (i // (target_width // image_size)) * image_size
left = (i % (target_width // image_size)) * image_size
bottom = top + image_size
right = left + image_size
# 使用 tensor 切片进行裁剪
split_img = resized_images[..., top:bottom, left:right] # 这里使用...来保持通道这一维度
processed_images.append(split_img)
# plt.imshow(split_img.sum(0).squeeze())
# plt.savefig(f'/workdir/guantongkun/12490719/eef5a3b245897c9f4335463fb12fed35/work_dirs/{i}_mask.jpg', dpi=600)
# pdb.set_trace()
# 最后,如果您需要,可以对处理过的图像list进行任何后续操作
# 例如,convert回通道为最后维度的形式,如果是单通道的话
processed_images = [img.squeeze(1) for img in processed_images]
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = F.interpolate(tensor_images, size=(image_size, image_size), mode='bilinear', align_corners=False).squeeze(1)
thumbnail_img = thumbnail_img > 0
# Image.fromarray(thumbnail_img.cpu().numpy().astype(np.uint8))
processed_images.append(thumbnail_img)
return processed_images
|