File size: 26,749 Bytes
841bef5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
# --------------------------------------------------------
# InternVL
# Copyright (c) 2024 OpenGVLab
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------

import bisect
import copy
import logging
from collections import defaultdict
from typing import List, Union

import numpy as np
import torch
import torch.distributed as dist
from torch.utils.data import IterableDataset, get_worker_info
from transformers.trainer_pt_utils import LabelSmoother

from .constants import IMG_CONTEXT_TOKEN, IMG_END_TOKEN, IMG_START_TOKEN

IGNORE_TOKEN_ID = LabelSmoother.ignore_index
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)


def is_dist_avail_and_initialized():
    if not dist.is_available():
        return False
    if not dist.is_initialized():
        return False
    return True


def get_world_size():
    if not is_dist_avail_and_initialized():
        return 1
    return dist.get_world_size()


def get_rank():
    if not is_dist_avail_and_initialized():
        return 0
    return dist.get_rank()


class PackedDataset(IterableDataset):
    def __init__(
        self,
        tokenizer,
        data_rank,
        data_world_size,
        datasets: List,
        dataset_weight: List[int] = None,
        num_images_expected: int = 6,
        max_packed_tokens: int = 32768,
        max_buffer_size: int = 100,
        log_freq: int = 1000000,
        strict_mode: bool = False,
        debug_mode: bool = False,
        replacement: bool = True,
        allow_overflow: bool = True,
        allow_empty_data: bool = False,
        allow_deduplicated_ds_name: bool = False,
    ):
        super().__init__()
        self.tokenizer = tokenizer
        self.data_rank = data_rank
        self.data_world_size = data_world_size
        self.datasets = datasets
        self.num_images_expected = num_images_expected
        self.max_buffer_size = max_buffer_size
        self.log_freq = log_freq
        self.strict_mode = strict_mode
        self.debug_mode = debug_mode
        self.replacement = replacement
        self.allow_overflow = allow_overflow
        self.allow_empty_data = allow_empty_data

        self.max_packed_tokens = max_packed_tokens

        self.img_start_token_id = self.tokenizer.convert_tokens_to_ids(IMG_START_TOKEN)
        self.img_token_id = self.tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
        self.img_end_token_id = self.tokenizer.convert_tokens_to_ids(IMG_END_TOKEN)

        assert self.img_start_token_id != self.tokenizer.unk_token_id
        assert self.img_token_id != self.tokenizer.unk_token_id
        assert self.img_end_token_id != self.tokenizer.unk_token_id

        if dataset_weight is None:
            dataset_weight = [1] * len(datasets)
        self.dataset_type = [d.dataset_type for d in self.datasets]

        self.datasets_orig = datasets
        self.dataset_weight_orig = [w / sum(dataset_weight) for w in dataset_weight]

        self.datasets = [ds for ds in self.datasets_orig]
        self.dataset_weight = [w for w in self.dataset_weight_orig]

        # lazy init
        self.worker_id = None
        self.worker_state_key = None
        self.dataset_iter_list = None
        self._state_dict = {
            'sample_info': {d.ds_name:0 for d in self.datasets},
        }

        self.worker_custom_infos = None

        ds_name_list = [d.ds_name for d in self.datasets]
        if not allow_deduplicated_ds_name:
            assert len(ds_name_list) == len(set(ds_name_list)), f'deduplicated ds_name: {ds_name_list}'

        for ds in self.datasets:
            if ds.max_num_images > self.num_images_expected:
                logger.warning(f'{ds.max_num_images=} of {ds.ds_name} is larger than {self.num_images_expected=}')
                ds.max_num_images = num_images_expected

            if ds.max_tokens > self.max_packed_tokens:
                logger.warning(f'{ds.max_tokens=} of {ds.ds_name} is larger than {self.max_packed_tokens=}')
                ds.max_tokens = self.max_packed_tokens

            self._state_dict[ds.ds_name] = {}

        if get_rank() == 0:
            logger.info(
                f'Loaded dataset to pack: {ds_name_list}, '
                f'{self.num_images_expected=}, {self.max_packed_tokens=}, '
                f'{self.replacement=}, {self.allow_overflow=}',
            )

            temp = []
            for ds, ds_w in zip(self.datasets, self.dataset_weight):
                temp.append(f'{ds.ds_name:<25}: {ds_w*100:.2f}%')
            temp = '\n'.join(temp)
            logger.info(
                f'Sampling prob for each dataset:\n{temp}'
            )

        if self.allow_empty_data:
            logger.warning('allow_empty_data is enabled, note that empty data may be generated!')

    def load_state_dict(self, state_dict, custom_infos=None):

        self.worker_custom_infos = custom_infos

        self._state_dict.update(state_dict)
        for ds in self.datasets:
            if ds.ds_name in self._state_dict:
                ds.load_state_dict(self._state_dict[ds.ds_name])
                logger.info(f'{ds.ds_name=} is resumed.')
            else:
                logger.warning(f'{ds.ds_name=} is not resumed.')

    def _should_log(self):
        worker_id = 0 if get_worker_info() is None else get_worker_info().id
        num_workers = 1 if get_worker_info() is None else get_worker_info().num_workers

        worker_id = num_workers * get_rank() + worker_id
        num_workers = num_workers * get_world_size()

        return worker_id == 0

    def next_data(self, current_dataset_idx):
        while True:
            try:
                current_sample = next(self.dataset_iter_list[current_dataset_idx])
                break  # Exit loop if successful
            except StopIteration:
                if self.replacement:
                    # logger.info(f'[Worker id {self.worker_id}] Dataset {self.datasets[current_dataset_idx].ds_name} is exhausted, restart it.')
                    try:
                        self.dataset_iter_list[current_dataset_idx] = iter(self.datasets[current_dataset_idx])
                        current_sample = next(self.dataset_iter_list[current_dataset_idx])
                        break
                    except:
                        # logger.error(f'{self.worker_id=} Fail to get any data from {self.datasets[current_dataset_idx].ds_name}! length={len(self.datasets)}')
                        self.datasets.pop(current_dataset_idx)
                        self.dataset_iter_list.pop(current_dataset_idx)
                        self.dataset_weight.pop(current_dataset_idx)

                        if len(self.datasets) == 0:
                            raise StopIteration
                        current_dataset_idx = np.random.choice(len(self.datasets))
                else:
                    # logger.error(f'{self.worker_id=} Fail to get any data from {self.datasets[current_dataset_idx].ds_name}! length={len(self.datasets)}')
                    self.datasets.pop(current_dataset_idx)
                    self.dataset_iter_list.pop(current_dataset_idx)
                    self.dataset_weight.pop(current_dataset_idx)

                    if len(self.datasets) == 0:
                        raise StopIteration
                    current_dataset_idx = np.random.choice(len(self.datasets))
            except:
                logger.error('Unexpected error!')
                if len(self.datasets) == 0:
                    raise StopIteration
                current_dataset_idx = np.random.choice(len(self.datasets))

        current_ds_name = self.datasets[current_dataset_idx].ds_name
        current_sample['type_ids'] = torch.zeros_like(current_sample['input_ids']) + current_dataset_idx

        if self.worker_state_key not in self._state_dict[current_ds_name]:
            self._state_dict[current_ds_name][self.worker_state_key] = {}

        meta_info = current_sample.pop('meta_info', {})
        self._state_dict[current_ds_name][self.worker_state_key].update(**meta_info)
        self._state_dict['sample_info'][self.datasets[current_dataset_idx].ds_name] += 1
        return current_sample

    def find_buffer(self, buffer_list, new_sample):
        # NOTE: use `bisect` to search might be faster

        find = False
        find_idx = -1
        num_images_current = new_sample['pixel_values'].size(0)
        for buffer_idx, buffer in enumerate(buffer_list):
            num_images_buffer = buffer['pixel_values'].size(0)
            if num_images_buffer + num_images_current <= self.num_images_expected:
                num_merged_tokens = new_sample['input_ids'].size(0) + buffer['input_ids'].size(0)

                if num_merged_tokens <= self.max_packed_tokens:
                    find = True
                    find_idx = buffer_idx
                    break

                if self.allow_overflow and len(buffer_list) >= self.max_buffer_size // 2:
                    find = True
                    find_idx = buffer_idx

        if find:
            return buffer_list.pop(find_idx)
        return None

    def update_buffer(self, buffer, new_sample):
        if buffer is None:
            new_sample['data_index'] = torch.zeros_like(new_sample['input_ids'])
            return new_sample

        new_sample['data_index'] = torch.ones_like(new_sample['input_ids']) + buffer['data_index'][-1].item()

        assert buffer.keys() == new_sample.keys()
        for k in buffer:
            buffer[k] = torch.cat([buffer[k], new_sample[k]])
        return buffer

    @staticmethod
    def check_valid(sample_to_check, min_active_tokens_ratio=1/256):
        num_ignore_tokens = (sample_to_check['labels'] == IGNORE_TOKEN_ID).sum()
        num_tokens = sample_to_check['labels'].numel()
        return (1 - num_ignore_tokens / num_tokens) > min_active_tokens_ratio

    @staticmethod
    def split_buffer(buffer, max_tokens, img_start_token_id, img_token_id, img_end_token_id):
        if buffer['input_ids'].size(0) <= max_tokens:
            return [buffer]

        def _image_is_splitted(input_ids, cut_idx):
            is_image_start = input_ids[cut_idx].item() == img_start_token_id
            is_image_token = input_ids[cut_idx].item() == img_token_id
            is_image_end = input_ids[cut_idx].item() == img_end_token_id
            return is_image_start or is_image_token or is_image_end

        def _split(sample_to_split, left_idx, right_idx, left_img_idx, right_img_idx):
            assert (right_idx is None) == (right_img_idx is None)

            left_sample = {}
            right_sample = {} if right_idx is not None else None
            for k in sample_to_split:
                if k in ['input_ids', 'labels', 'attention_mask', 'position_ids', 'data_index', 'type_ids']:
                    left_sample[k] = sample_to_split[k][:left_idx]
                    if right_sample is not None:
                        right_sample[k] = sample_to_split[k][right_idx:]
                elif k in ['pixel_values', 'image_flags']:
                    left_sample[k] = sample_to_split[k][:left_img_idx]
                    if right_sample is not None:
                        right_sample[k] = sample_to_split[k][right_img_idx:]
                else:
                    raise NotImplementedError(f'find unsupported keys: {k} from {sample_to_split.keys()}')
            return left_sample, right_sample

        splitted_buffer = []
        while buffer['input_ids'].size(0) > max_tokens:
            img_start_idx_list = (buffer['input_ids'] == img_start_token_id).nonzero().squeeze(1).tolist()
            img_end_idx_list = (buffer['input_ids'] == img_end_token_id).nonzero().squeeze(1).tolist()
            assert len(img_start_idx_list) == len(img_end_idx_list)

            if _image_is_splitted(buffer['input_ids'], max_tokens):
                cut_idx = bisect.bisect_left(img_start_idx_list, max_tokens)
                if buffer['input_ids'][max_tokens] == img_start_token_id:
                    assert max_tokens == img_start_idx_list[cut_idx]
                    cut_left_idx = img_start_idx_list[cut_idx]
                    cut_left_img_idx = cut_idx
                else:
                    cut_left_idx = img_start_idx_list[cut_idx - 1]
                    cut_left_img_idx = cut_idx - 1
                cut_right_idx = cut_left_idx
                cut_right_img_idx = cut_left_img_idx
            else:
                cut_img_idx = bisect.bisect(img_start_idx_list, max_tokens)
                if cut_img_idx < len(img_start_idx_list):
                    cut_right_idx = img_start_idx_list[cut_img_idx]
                    cut_right_img_idx = cut_img_idx
                else:
                    cut_right_idx = None
                    cut_right_img_idx = None

                cut_left_idx = max_tokens
                cut_left_img_idx = cut_right_img_idx if cut_right_img_idx is not None else buffer['pixel_values'].size(0)

            left, right = _split(
                sample_to_split=buffer,
                left_idx=cut_left_idx,
                left_img_idx=cut_left_img_idx,
                right_idx=cut_right_idx,
                right_img_idx=cut_right_img_idx,
            )

            assert (left['input_ids'] == img_end_token_id).sum() == (left['input_ids'] == img_start_token_id).sum() == left['pixel_values'].size(0)
            if right is not None:
                assert (right['input_ids'] == img_end_token_id).sum() == (right['input_ids'] == img_start_token_id).sum() == right['pixel_values'].size(0)

            if left['pixel_values'].size(0) >= 1 and PackedDataset.check_valid(left):
                splitted_buffer.append(left)

            if right is None or right['pixel_values'].size(0) == 0:
                break

            buffer = right
            if buffer['input_ids'].size(0) <= max_tokens and PackedDataset.check_valid(buffer):
                splitted_buffer.append(buffer)
                break

        logger.debug(
            f'split a sample into {len(splitted_buffer)} samples, '
            f'current max_tokens={max_tokens}'
        )
        return splitted_buffer

    def update_buffer_list(self, buffer_list, buffer_max_len_list, buffer):
        # NOTE: in-place operation

        splitted_buffer = PackedDataset.split_buffer(
            buffer=buffer,
            max_tokens=self.max_packed_tokens,
            img_start_token_id=self.img_start_token_id,
            img_token_id=self.img_token_id,
            img_end_token_id=self.img_end_token_id,
        )

        for each_buffer in splitted_buffer:
            if each_buffer['pixel_values'].size(0) > self.num_images_expected:
                logger.error(
                    f"Find a sample with {each_buffer['pixel_values'].size(0)} images, "
                    f'which exceeds {self.num_images_expected}'
                )
                continue

            if each_buffer['input_ids'].size(0) >= self.max_packed_tokens:
                assert each_buffer['input_ids'].size(0) == self.max_packed_tokens
                buffer_max_len_list.append(each_buffer)
                continue

            find_idx = len(buffer_list)
            num_images_new_sample = each_buffer['pixel_values'].size(0)
            for buffer_idx in range(len(buffer_list)):
                if buffer_list[buffer_idx]['pixel_values'].size(0) < num_images_new_sample:
                    find_idx = buffer_idx
                    break
            buffer_list.insert(find_idx, each_buffer)

        for i in range(1, len(buffer_list)):
            assert buffer_list[i-1]['pixel_values'].size(0) >= buffer_list[i]['pixel_values'].size(0)

        return buffer_list, buffer_max_len_list

    def pad_buffer(self, buffer):
        if buffer['pixel_values'].size(0) == self.num_images_expected:
            return buffer

        num_pad_images = self.num_images_expected - buffer['pixel_values'].size(0)
        pad_images = torch.stack([
            torch.zeros_like(buffer['pixel_values'][0])
            for _ in range(num_pad_images)
        ])
        pad_image_flags = torch.tensor([0] * num_pad_images, dtype=torch.long)

        buffer['pixel_values'] = torch.cat([buffer['pixel_values'], pad_images])
        buffer['image_flags'] = torch.cat([buffer['image_flags'], pad_image_flags])

        return buffer

    def postprocess_buffer(self, buffer, custom_infos=None):
        buffer['worker_state_key'] = self.worker_state_key
        buffer['worker_state_dict'] = self._state_dict
        if custom_infos is not None:
            buffer['custom_infos'] = {self.worker_state_key: copy.deepcopy(custom_infos)}
        return buffer

    def print_log(self, iter_idx, buffer_list):
        if iter_idx % self.log_freq != 0:
            return

        if self._should_log():
            logger.info(
                f"{iter_idx=}, {len(buffer_list)=}, {self._state_dict['sample_info']}"
            )

    def __iter__(self):
        iter_idx = 0
        buffer_list = []
        buffer_max_len_list = []

        if self._should_log():
            logger.info(f'Begin to iter, {len(buffer_list)=}')

        worker_id = 0 if get_worker_info() is None else get_worker_info().id
        num_workers = 1 if get_worker_info() is None else get_worker_info().num_workers

        worker_id = num_workers * self.data_rank + worker_id
        num_workers = num_workers * self.data_world_size

        rng = np.random.default_rng(seed=worker_id)

        # reset states of each dataset
        self.worker_id = worker_id
        self.worker_state_key = f'work_state_{self.worker_id}'
        self.datasets = [d for d in self.datasets_orig]
        self.dataset_weight = [w for w in self.dataset_weight_orig]
        self.dataset_iter_list = [iter(d) for d in self.datasets]

        for ds in self.datasets:
            # if not isinstance(ds, (ImageTextPairDataset, InterleavedDataset)):
            ds.worker_id = worker_id
            ds.worker_state_key = f'work_state_{self.worker_id}'
            ds.num_workers = num_workers
            if self._should_log() and worker_id == 0:
                logger.info(f'set worker_id and num_workers of {ds.__class__.__name__} {ds.ds_name}')

        if self.worker_custom_infos is not None and self.worker_state_key in self.worker_custom_infos:
            custom_infos = self.worker_custom_infos[self.worker_state_key]
            # buffer list
            if 'buffer_list' in custom_infos and isinstance(custom_infos['buffer_list'], list):
                buffer_list = custom_infos['buffer_list']
                if self._should_log() and worker_id == 0:
                    logger.info(f'[{self.worker_state_key}] load buffer list --> {len(buffer_list)=}')
            # other infos

            # reset
            self.worker_custom_infos = None

        logger.debug(
            f'{self.__class__.__name__} Rank {self.data_rank} '
            f'Worker {worker_id} begin to load data'
        )

        while True:
            self.dataset_weight = [w / sum(self.dataset_weight) for w in self.dataset_weight]
            current_dataset_idx = rng.choice(len(self.dataset_iter_list), p=self.dataset_weight)

            try:
                current_sample = self.next_data(current_dataset_idx)
            except:
                logger.info(f'All datasets are exhausted, begin to empty the buffer_list ({len(buffer_list)=})')
                while len(buffer_list) > 0:
                    if self.strict_mode:
                        yield self.postprocess_buffer(self.pad_buffer(buffer_list.pop(0)))
                    else:
                        yield self.postprocess_buffer(buffer_list.pop(0))
                logger.info(f'buffer_list is empty! ({len(buffer_list)=})')
                return

            buffer = self.find_buffer(buffer_list, current_sample)
            buffer = self.update_buffer(buffer, current_sample)
            buffer_list, buffer_max_len_list = self.update_buffer_list(buffer_list, buffer_max_len_list, buffer)

            while len(buffer_max_len_list) > 0:
                if buffer_max_len_list[0]['pixel_values'].size(0) != self.max_packed_tokens:
                    logger.debug(
                        f'num tokens of a buffer exceed {self.max_packed_tokens=}, '
                        f"yield a sample with {buffer_max_len_list[0]['pixel_values'].size(0)} images"
                    )
                if self.strict_mode and buffer_max_len_list[0]['pixel_values'].size(0) != self.num_images_expected:
                    # buffer_max_len_list.pop(0)
                    yield self.postprocess_buffer(self.pad_buffer(buffer_max_len_list.pop(0)), {'buffer_list': buffer_list})
                else:
                    yield self.postprocess_buffer(buffer_max_len_list.pop(0), {'buffer_list': buffer_list})

            while len(buffer_list) > 0 and buffer_list[0]['pixel_values'].size(0) > self.num_images_expected:
                logger.error(
                    f"num images of a buffer ({buffer_list[0]['pixel_values'].size(0)}) "
                    f'is larger than num_images_expected({self.num_images_expected})'
                )
                buffer_list.pop(0)

            while len(buffer_list) > 0 and buffer_list[0]['pixel_values'].size(0) == self.num_images_expected:
                if self.debug_mode:
                    debug_data = self.postprocess_buffer(buffer_list.pop(0), {'buffer_list': buffer_list})
                    while True:
                        yield debug_data.copy()

                yield self.postprocess_buffer(buffer_list.pop(0), {'buffer_list': buffer_list})

            while len(buffer_list) > self.max_buffer_size:
                logger.debug(
                    f'Failed to pack data to exactly {self.num_images_expected} images, '
                    f"yield a data sample with {buffer_list[0]['pixel_values'].size(0)} images."
                )
                if self.strict_mode:
                    yield self.postprocess_buffer(self.pad_buffer(buffer_list.pop(0)), {'buffer_list': buffer_list})
                else:
                    yield self.postprocess_buffer(buffer_list.pop(0), {'buffer_list': buffer_list})

            self.print_log(iter_idx=iter_idx, buffer_list=buffer_list)
            iter_idx += 1

    @staticmethod
    def get_cu_seqlens_and_indexes(
        data_index: torch.LongTensor,  # (seq_len,)
        input_ids: torch.LongTensor,   # (seq_len,)
        labels: torch.LongTensor,   # (seq_len,)
        len2weight: callable,
    ):
        indexes = []
        cu_seqlens = [0]
        loss_weight = []

        start = data_index.min()
        end = data_index.max() + 1
        for i in range(start, end):
            num_tokens = (data_index == i).sum().item()
            indexes.extend(list(range(num_tokens)))
            cu_seqlens.append(cu_seqlens[-1] + num_tokens)
            assert num_tokens > 0

            curr_data_index = data_index[cu_seqlens[-2]:cu_seqlens[-2]+num_tokens]
            assert (curr_data_index == i).all(), data_index

            curr_labels = labels[cu_seqlens[-2]:cu_seqlens[-2]+num_tokens]
            num_effective_tokens = (curr_labels != IGNORE_TOKEN_ID).sum().item()
            loss_weight.extend([len2weight(num_effective_tokens)] * num_tokens)

        assert len(indexes) == data_index.size(0), f'{len(indexes)=}, {data_index.size(0)=}'

        loss_weight = torch.tensor(loss_weight, dtype=torch.float32)
        return cu_seqlens, indexes, loss_weight


WARNING_CNT = defaultdict(int)


def packed_collate_fn(
    features,
    data_collator,
    len2weight: callable,
    max_item_length: int,
    micro_num: int = 1,
    loss_reduction_all_gather: bool = False,
    pad_id: int = 0,
):
    if not isinstance(features, list):
        features = [features]

    if len(features) > micro_num:
        raise NotImplementedError(f'{len(features)=} > {micro_num=}')

    if len(features) < micro_num and WARNING_CNT['micro_num_warning'] < 5:
        logger.warning(
            f'{len(features)=} > {micro_num=}, '
            f'the features will be padded to satisfy micro_num requirement'
        )
        WARNING_CNT['micro_num_warning'] += 1

    # ensure that the len(features) is equal to the required micro_num
    num_features = len(features)
    while len(features) < micro_num:
        features.append(copy.deepcopy(features[0]))
        features[-1]['labels'] = torch.full_like(features[-1]['labels'], IGNORE_TOKEN_ID)

    indexes = []
    cu_seqlens = []
    cu_num_images_list = [0]

    worker_state_key_list = []
    worker_state_dict_list = []
    worker_state_custom_infos_list = []

    batch_lens = [feat['input_ids'].shape for feat in features]
    max_item_length = max_item_length or max(batch_lens)[0]

    num_samples = 0
    num_padding_tokens = 0
    for feat_idx, feat in enumerate(features):
        data_index = feat.pop('data_index')
        curr_cu_seqlens, curr_indexes, curr_loss_weight = PackedDataset.get_cu_seqlens_and_indexes(
            data_index=data_index,
            input_ids=feat['input_ids'],
            labels=feat['labels'],
            len2weight=len2weight,
        )

        feat['loss_weight'] = curr_loss_weight

        if feat_idx < num_features:
            num_samples += len(curr_cu_seqlens) - 1

        if curr_cu_seqlens[-1] < max_item_length:
            curr_cu_seqlens.append(max_item_length)
            curr_indexes.extend(list(range(max_item_length - curr_cu_seqlens[-2])))

        indexes.append(torch.tensor(curr_indexes, dtype=torch.long))
        cu_seqlens.append(torch.tensor(curr_cu_seqlens, dtype=torch.int32))

        worker_state_key_list.append(feat.pop('worker_state_key'))
        worker_state_dict_list.append(feat.pop('worker_state_dict'))
        worker_state_custom_infos_list.append(feat.pop('custom_infos', None))

        num_padding_tokens += (max_item_length - feat['input_ids'].size(0))
        cu_num_images_list.append(cu_num_images_list[-1] + feat['pixel_values'].size(0))

    batch = data_collator(features=features, max_item_length=max_item_length, pad_id=pad_id)
    # convert it to list in case it is converted into bf16
    batch['loss_weight'] = torch.where(batch['labels'] == IGNORE_TOKEN_ID, 0, batch['loss_weight']).tolist()
    batch['attention_mask'] = torch.stack(cu_seqlens)
    batch['loss_reduction_all_gather'] = loss_reduction_all_gather
    batch['statistics'] = torch.tensor(
        [
            num_samples,
            num_padding_tokens,
            batch['image_flags'].numel() - batch['image_flags'].sum().item(),
        ],
        dtype=torch.long,
    )
    batch.pop('type_ids')
    return batch