Spaces:
Running
on
Zero
Running
on
Zero
File size: 26,749 Bytes
841bef5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 |
# --------------------------------------------------------
# InternVL
# Copyright (c) 2024 OpenGVLab
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
import bisect
import copy
import logging
from collections import defaultdict
from typing import List, Union
import numpy as np
import torch
import torch.distributed as dist
from torch.utils.data import IterableDataset, get_worker_info
from transformers.trainer_pt_utils import LabelSmoother
from .constants import IMG_CONTEXT_TOKEN, IMG_END_TOKEN, IMG_START_TOKEN
IGNORE_TOKEN_ID = LabelSmoother.ignore_index
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
def is_dist_avail_and_initialized():
if not dist.is_available():
return False
if not dist.is_initialized():
return False
return True
def get_world_size():
if not is_dist_avail_and_initialized():
return 1
return dist.get_world_size()
def get_rank():
if not is_dist_avail_and_initialized():
return 0
return dist.get_rank()
class PackedDataset(IterableDataset):
def __init__(
self,
tokenizer,
data_rank,
data_world_size,
datasets: List,
dataset_weight: List[int] = None,
num_images_expected: int = 6,
max_packed_tokens: int = 32768,
max_buffer_size: int = 100,
log_freq: int = 1000000,
strict_mode: bool = False,
debug_mode: bool = False,
replacement: bool = True,
allow_overflow: bool = True,
allow_empty_data: bool = False,
allow_deduplicated_ds_name: bool = False,
):
super().__init__()
self.tokenizer = tokenizer
self.data_rank = data_rank
self.data_world_size = data_world_size
self.datasets = datasets
self.num_images_expected = num_images_expected
self.max_buffer_size = max_buffer_size
self.log_freq = log_freq
self.strict_mode = strict_mode
self.debug_mode = debug_mode
self.replacement = replacement
self.allow_overflow = allow_overflow
self.allow_empty_data = allow_empty_data
self.max_packed_tokens = max_packed_tokens
self.img_start_token_id = self.tokenizer.convert_tokens_to_ids(IMG_START_TOKEN)
self.img_token_id = self.tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
self.img_end_token_id = self.tokenizer.convert_tokens_to_ids(IMG_END_TOKEN)
assert self.img_start_token_id != self.tokenizer.unk_token_id
assert self.img_token_id != self.tokenizer.unk_token_id
assert self.img_end_token_id != self.tokenizer.unk_token_id
if dataset_weight is None:
dataset_weight = [1] * len(datasets)
self.dataset_type = [d.dataset_type for d in self.datasets]
self.datasets_orig = datasets
self.dataset_weight_orig = [w / sum(dataset_weight) for w in dataset_weight]
self.datasets = [ds for ds in self.datasets_orig]
self.dataset_weight = [w for w in self.dataset_weight_orig]
# lazy init
self.worker_id = None
self.worker_state_key = None
self.dataset_iter_list = None
self._state_dict = {
'sample_info': {d.ds_name:0 for d in self.datasets},
}
self.worker_custom_infos = None
ds_name_list = [d.ds_name for d in self.datasets]
if not allow_deduplicated_ds_name:
assert len(ds_name_list) == len(set(ds_name_list)), f'deduplicated ds_name: {ds_name_list}'
for ds in self.datasets:
if ds.max_num_images > self.num_images_expected:
logger.warning(f'{ds.max_num_images=} of {ds.ds_name} is larger than {self.num_images_expected=}')
ds.max_num_images = num_images_expected
if ds.max_tokens > self.max_packed_tokens:
logger.warning(f'{ds.max_tokens=} of {ds.ds_name} is larger than {self.max_packed_tokens=}')
ds.max_tokens = self.max_packed_tokens
self._state_dict[ds.ds_name] = {}
if get_rank() == 0:
logger.info(
f'Loaded dataset to pack: {ds_name_list}, '
f'{self.num_images_expected=}, {self.max_packed_tokens=}, '
f'{self.replacement=}, {self.allow_overflow=}',
)
temp = []
for ds, ds_w in zip(self.datasets, self.dataset_weight):
temp.append(f'{ds.ds_name:<25}: {ds_w*100:.2f}%')
temp = '\n'.join(temp)
logger.info(
f'Sampling prob for each dataset:\n{temp}'
)
if self.allow_empty_data:
logger.warning('allow_empty_data is enabled, note that empty data may be generated!')
def load_state_dict(self, state_dict, custom_infos=None):
self.worker_custom_infos = custom_infos
self._state_dict.update(state_dict)
for ds in self.datasets:
if ds.ds_name in self._state_dict:
ds.load_state_dict(self._state_dict[ds.ds_name])
logger.info(f'{ds.ds_name=} is resumed.')
else:
logger.warning(f'{ds.ds_name=} is not resumed.')
def _should_log(self):
worker_id = 0 if get_worker_info() is None else get_worker_info().id
num_workers = 1 if get_worker_info() is None else get_worker_info().num_workers
worker_id = num_workers * get_rank() + worker_id
num_workers = num_workers * get_world_size()
return worker_id == 0
def next_data(self, current_dataset_idx):
while True:
try:
current_sample = next(self.dataset_iter_list[current_dataset_idx])
break # Exit loop if successful
except StopIteration:
if self.replacement:
# logger.info(f'[Worker id {self.worker_id}] Dataset {self.datasets[current_dataset_idx].ds_name} is exhausted, restart it.')
try:
self.dataset_iter_list[current_dataset_idx] = iter(self.datasets[current_dataset_idx])
current_sample = next(self.dataset_iter_list[current_dataset_idx])
break
except:
# logger.error(f'{self.worker_id=} Fail to get any data from {self.datasets[current_dataset_idx].ds_name}! length={len(self.datasets)}')
self.datasets.pop(current_dataset_idx)
self.dataset_iter_list.pop(current_dataset_idx)
self.dataset_weight.pop(current_dataset_idx)
if len(self.datasets) == 0:
raise StopIteration
current_dataset_idx = np.random.choice(len(self.datasets))
else:
# logger.error(f'{self.worker_id=} Fail to get any data from {self.datasets[current_dataset_idx].ds_name}! length={len(self.datasets)}')
self.datasets.pop(current_dataset_idx)
self.dataset_iter_list.pop(current_dataset_idx)
self.dataset_weight.pop(current_dataset_idx)
if len(self.datasets) == 0:
raise StopIteration
current_dataset_idx = np.random.choice(len(self.datasets))
except:
logger.error('Unexpected error!')
if len(self.datasets) == 0:
raise StopIteration
current_dataset_idx = np.random.choice(len(self.datasets))
current_ds_name = self.datasets[current_dataset_idx].ds_name
current_sample['type_ids'] = torch.zeros_like(current_sample['input_ids']) + current_dataset_idx
if self.worker_state_key not in self._state_dict[current_ds_name]:
self._state_dict[current_ds_name][self.worker_state_key] = {}
meta_info = current_sample.pop('meta_info', {})
self._state_dict[current_ds_name][self.worker_state_key].update(**meta_info)
self._state_dict['sample_info'][self.datasets[current_dataset_idx].ds_name] += 1
return current_sample
def find_buffer(self, buffer_list, new_sample):
# NOTE: use `bisect` to search might be faster
find = False
find_idx = -1
num_images_current = new_sample['pixel_values'].size(0)
for buffer_idx, buffer in enumerate(buffer_list):
num_images_buffer = buffer['pixel_values'].size(0)
if num_images_buffer + num_images_current <= self.num_images_expected:
num_merged_tokens = new_sample['input_ids'].size(0) + buffer['input_ids'].size(0)
if num_merged_tokens <= self.max_packed_tokens:
find = True
find_idx = buffer_idx
break
if self.allow_overflow and len(buffer_list) >= self.max_buffer_size // 2:
find = True
find_idx = buffer_idx
if find:
return buffer_list.pop(find_idx)
return None
def update_buffer(self, buffer, new_sample):
if buffer is None:
new_sample['data_index'] = torch.zeros_like(new_sample['input_ids'])
return new_sample
new_sample['data_index'] = torch.ones_like(new_sample['input_ids']) + buffer['data_index'][-1].item()
assert buffer.keys() == new_sample.keys()
for k in buffer:
buffer[k] = torch.cat([buffer[k], new_sample[k]])
return buffer
@staticmethod
def check_valid(sample_to_check, min_active_tokens_ratio=1/256):
num_ignore_tokens = (sample_to_check['labels'] == IGNORE_TOKEN_ID).sum()
num_tokens = sample_to_check['labels'].numel()
return (1 - num_ignore_tokens / num_tokens) > min_active_tokens_ratio
@staticmethod
def split_buffer(buffer, max_tokens, img_start_token_id, img_token_id, img_end_token_id):
if buffer['input_ids'].size(0) <= max_tokens:
return [buffer]
def _image_is_splitted(input_ids, cut_idx):
is_image_start = input_ids[cut_idx].item() == img_start_token_id
is_image_token = input_ids[cut_idx].item() == img_token_id
is_image_end = input_ids[cut_idx].item() == img_end_token_id
return is_image_start or is_image_token or is_image_end
def _split(sample_to_split, left_idx, right_idx, left_img_idx, right_img_idx):
assert (right_idx is None) == (right_img_idx is None)
left_sample = {}
right_sample = {} if right_idx is not None else None
for k in sample_to_split:
if k in ['input_ids', 'labels', 'attention_mask', 'position_ids', 'data_index', 'type_ids']:
left_sample[k] = sample_to_split[k][:left_idx]
if right_sample is not None:
right_sample[k] = sample_to_split[k][right_idx:]
elif k in ['pixel_values', 'image_flags']:
left_sample[k] = sample_to_split[k][:left_img_idx]
if right_sample is not None:
right_sample[k] = sample_to_split[k][right_img_idx:]
else:
raise NotImplementedError(f'find unsupported keys: {k} from {sample_to_split.keys()}')
return left_sample, right_sample
splitted_buffer = []
while buffer['input_ids'].size(0) > max_tokens:
img_start_idx_list = (buffer['input_ids'] == img_start_token_id).nonzero().squeeze(1).tolist()
img_end_idx_list = (buffer['input_ids'] == img_end_token_id).nonzero().squeeze(1).tolist()
assert len(img_start_idx_list) == len(img_end_idx_list)
if _image_is_splitted(buffer['input_ids'], max_tokens):
cut_idx = bisect.bisect_left(img_start_idx_list, max_tokens)
if buffer['input_ids'][max_tokens] == img_start_token_id:
assert max_tokens == img_start_idx_list[cut_idx]
cut_left_idx = img_start_idx_list[cut_idx]
cut_left_img_idx = cut_idx
else:
cut_left_idx = img_start_idx_list[cut_idx - 1]
cut_left_img_idx = cut_idx - 1
cut_right_idx = cut_left_idx
cut_right_img_idx = cut_left_img_idx
else:
cut_img_idx = bisect.bisect(img_start_idx_list, max_tokens)
if cut_img_idx < len(img_start_idx_list):
cut_right_idx = img_start_idx_list[cut_img_idx]
cut_right_img_idx = cut_img_idx
else:
cut_right_idx = None
cut_right_img_idx = None
cut_left_idx = max_tokens
cut_left_img_idx = cut_right_img_idx if cut_right_img_idx is not None else buffer['pixel_values'].size(0)
left, right = _split(
sample_to_split=buffer,
left_idx=cut_left_idx,
left_img_idx=cut_left_img_idx,
right_idx=cut_right_idx,
right_img_idx=cut_right_img_idx,
)
assert (left['input_ids'] == img_end_token_id).sum() == (left['input_ids'] == img_start_token_id).sum() == left['pixel_values'].size(0)
if right is not None:
assert (right['input_ids'] == img_end_token_id).sum() == (right['input_ids'] == img_start_token_id).sum() == right['pixel_values'].size(0)
if left['pixel_values'].size(0) >= 1 and PackedDataset.check_valid(left):
splitted_buffer.append(left)
if right is None or right['pixel_values'].size(0) == 0:
break
buffer = right
if buffer['input_ids'].size(0) <= max_tokens and PackedDataset.check_valid(buffer):
splitted_buffer.append(buffer)
break
logger.debug(
f'split a sample into {len(splitted_buffer)} samples, '
f'current max_tokens={max_tokens}'
)
return splitted_buffer
def update_buffer_list(self, buffer_list, buffer_max_len_list, buffer):
# NOTE: in-place operation
splitted_buffer = PackedDataset.split_buffer(
buffer=buffer,
max_tokens=self.max_packed_tokens,
img_start_token_id=self.img_start_token_id,
img_token_id=self.img_token_id,
img_end_token_id=self.img_end_token_id,
)
for each_buffer in splitted_buffer:
if each_buffer['pixel_values'].size(0) > self.num_images_expected:
logger.error(
f"Find a sample with {each_buffer['pixel_values'].size(0)} images, "
f'which exceeds {self.num_images_expected}'
)
continue
if each_buffer['input_ids'].size(0) >= self.max_packed_tokens:
assert each_buffer['input_ids'].size(0) == self.max_packed_tokens
buffer_max_len_list.append(each_buffer)
continue
find_idx = len(buffer_list)
num_images_new_sample = each_buffer['pixel_values'].size(0)
for buffer_idx in range(len(buffer_list)):
if buffer_list[buffer_idx]['pixel_values'].size(0) < num_images_new_sample:
find_idx = buffer_idx
break
buffer_list.insert(find_idx, each_buffer)
for i in range(1, len(buffer_list)):
assert buffer_list[i-1]['pixel_values'].size(0) >= buffer_list[i]['pixel_values'].size(0)
return buffer_list, buffer_max_len_list
def pad_buffer(self, buffer):
if buffer['pixel_values'].size(0) == self.num_images_expected:
return buffer
num_pad_images = self.num_images_expected - buffer['pixel_values'].size(0)
pad_images = torch.stack([
torch.zeros_like(buffer['pixel_values'][0])
for _ in range(num_pad_images)
])
pad_image_flags = torch.tensor([0] * num_pad_images, dtype=torch.long)
buffer['pixel_values'] = torch.cat([buffer['pixel_values'], pad_images])
buffer['image_flags'] = torch.cat([buffer['image_flags'], pad_image_flags])
return buffer
def postprocess_buffer(self, buffer, custom_infos=None):
buffer['worker_state_key'] = self.worker_state_key
buffer['worker_state_dict'] = self._state_dict
if custom_infos is not None:
buffer['custom_infos'] = {self.worker_state_key: copy.deepcopy(custom_infos)}
return buffer
def print_log(self, iter_idx, buffer_list):
if iter_idx % self.log_freq != 0:
return
if self._should_log():
logger.info(
f"{iter_idx=}, {len(buffer_list)=}, {self._state_dict['sample_info']}"
)
def __iter__(self):
iter_idx = 0
buffer_list = []
buffer_max_len_list = []
if self._should_log():
logger.info(f'Begin to iter, {len(buffer_list)=}')
worker_id = 0 if get_worker_info() is None else get_worker_info().id
num_workers = 1 if get_worker_info() is None else get_worker_info().num_workers
worker_id = num_workers * self.data_rank + worker_id
num_workers = num_workers * self.data_world_size
rng = np.random.default_rng(seed=worker_id)
# reset states of each dataset
self.worker_id = worker_id
self.worker_state_key = f'work_state_{self.worker_id}'
self.datasets = [d for d in self.datasets_orig]
self.dataset_weight = [w for w in self.dataset_weight_orig]
self.dataset_iter_list = [iter(d) for d in self.datasets]
for ds in self.datasets:
# if not isinstance(ds, (ImageTextPairDataset, InterleavedDataset)):
ds.worker_id = worker_id
ds.worker_state_key = f'work_state_{self.worker_id}'
ds.num_workers = num_workers
if self._should_log() and worker_id == 0:
logger.info(f'set worker_id and num_workers of {ds.__class__.__name__} {ds.ds_name}')
if self.worker_custom_infos is not None and self.worker_state_key in self.worker_custom_infos:
custom_infos = self.worker_custom_infos[self.worker_state_key]
# buffer list
if 'buffer_list' in custom_infos and isinstance(custom_infos['buffer_list'], list):
buffer_list = custom_infos['buffer_list']
if self._should_log() and worker_id == 0:
logger.info(f'[{self.worker_state_key}] load buffer list --> {len(buffer_list)=}')
# other infos
# reset
self.worker_custom_infos = None
logger.debug(
f'{self.__class__.__name__} Rank {self.data_rank} '
f'Worker {worker_id} begin to load data'
)
while True:
self.dataset_weight = [w / sum(self.dataset_weight) for w in self.dataset_weight]
current_dataset_idx = rng.choice(len(self.dataset_iter_list), p=self.dataset_weight)
try:
current_sample = self.next_data(current_dataset_idx)
except:
logger.info(f'All datasets are exhausted, begin to empty the buffer_list ({len(buffer_list)=})')
while len(buffer_list) > 0:
if self.strict_mode:
yield self.postprocess_buffer(self.pad_buffer(buffer_list.pop(0)))
else:
yield self.postprocess_buffer(buffer_list.pop(0))
logger.info(f'buffer_list is empty! ({len(buffer_list)=})')
return
buffer = self.find_buffer(buffer_list, current_sample)
buffer = self.update_buffer(buffer, current_sample)
buffer_list, buffer_max_len_list = self.update_buffer_list(buffer_list, buffer_max_len_list, buffer)
while len(buffer_max_len_list) > 0:
if buffer_max_len_list[0]['pixel_values'].size(0) != self.max_packed_tokens:
logger.debug(
f'num tokens of a buffer exceed {self.max_packed_tokens=}, '
f"yield a sample with {buffer_max_len_list[0]['pixel_values'].size(0)} images"
)
if self.strict_mode and buffer_max_len_list[0]['pixel_values'].size(0) != self.num_images_expected:
# buffer_max_len_list.pop(0)
yield self.postprocess_buffer(self.pad_buffer(buffer_max_len_list.pop(0)), {'buffer_list': buffer_list})
else:
yield self.postprocess_buffer(buffer_max_len_list.pop(0), {'buffer_list': buffer_list})
while len(buffer_list) > 0 and buffer_list[0]['pixel_values'].size(0) > self.num_images_expected:
logger.error(
f"num images of a buffer ({buffer_list[0]['pixel_values'].size(0)}) "
f'is larger than num_images_expected({self.num_images_expected})'
)
buffer_list.pop(0)
while len(buffer_list) > 0 and buffer_list[0]['pixel_values'].size(0) == self.num_images_expected:
if self.debug_mode:
debug_data = self.postprocess_buffer(buffer_list.pop(0), {'buffer_list': buffer_list})
while True:
yield debug_data.copy()
yield self.postprocess_buffer(buffer_list.pop(0), {'buffer_list': buffer_list})
while len(buffer_list) > self.max_buffer_size:
logger.debug(
f'Failed to pack data to exactly {self.num_images_expected} images, '
f"yield a data sample with {buffer_list[0]['pixel_values'].size(0)} images."
)
if self.strict_mode:
yield self.postprocess_buffer(self.pad_buffer(buffer_list.pop(0)), {'buffer_list': buffer_list})
else:
yield self.postprocess_buffer(buffer_list.pop(0), {'buffer_list': buffer_list})
self.print_log(iter_idx=iter_idx, buffer_list=buffer_list)
iter_idx += 1
@staticmethod
def get_cu_seqlens_and_indexes(
data_index: torch.LongTensor, # (seq_len,)
input_ids: torch.LongTensor, # (seq_len,)
labels: torch.LongTensor, # (seq_len,)
len2weight: callable,
):
indexes = []
cu_seqlens = [0]
loss_weight = []
start = data_index.min()
end = data_index.max() + 1
for i in range(start, end):
num_tokens = (data_index == i).sum().item()
indexes.extend(list(range(num_tokens)))
cu_seqlens.append(cu_seqlens[-1] + num_tokens)
assert num_tokens > 0
curr_data_index = data_index[cu_seqlens[-2]:cu_seqlens[-2]+num_tokens]
assert (curr_data_index == i).all(), data_index
curr_labels = labels[cu_seqlens[-2]:cu_seqlens[-2]+num_tokens]
num_effective_tokens = (curr_labels != IGNORE_TOKEN_ID).sum().item()
loss_weight.extend([len2weight(num_effective_tokens)] * num_tokens)
assert len(indexes) == data_index.size(0), f'{len(indexes)=}, {data_index.size(0)=}'
loss_weight = torch.tensor(loss_weight, dtype=torch.float32)
return cu_seqlens, indexes, loss_weight
WARNING_CNT = defaultdict(int)
def packed_collate_fn(
features,
data_collator,
len2weight: callable,
max_item_length: int,
micro_num: int = 1,
loss_reduction_all_gather: bool = False,
pad_id: int = 0,
):
if not isinstance(features, list):
features = [features]
if len(features) > micro_num:
raise NotImplementedError(f'{len(features)=} > {micro_num=}')
if len(features) < micro_num and WARNING_CNT['micro_num_warning'] < 5:
logger.warning(
f'{len(features)=} > {micro_num=}, '
f'the features will be padded to satisfy micro_num requirement'
)
WARNING_CNT['micro_num_warning'] += 1
# ensure that the len(features) is equal to the required micro_num
num_features = len(features)
while len(features) < micro_num:
features.append(copy.deepcopy(features[0]))
features[-1]['labels'] = torch.full_like(features[-1]['labels'], IGNORE_TOKEN_ID)
indexes = []
cu_seqlens = []
cu_num_images_list = [0]
worker_state_key_list = []
worker_state_dict_list = []
worker_state_custom_infos_list = []
batch_lens = [feat['input_ids'].shape for feat in features]
max_item_length = max_item_length or max(batch_lens)[0]
num_samples = 0
num_padding_tokens = 0
for feat_idx, feat in enumerate(features):
data_index = feat.pop('data_index')
curr_cu_seqlens, curr_indexes, curr_loss_weight = PackedDataset.get_cu_seqlens_and_indexes(
data_index=data_index,
input_ids=feat['input_ids'],
labels=feat['labels'],
len2weight=len2weight,
)
feat['loss_weight'] = curr_loss_weight
if feat_idx < num_features:
num_samples += len(curr_cu_seqlens) - 1
if curr_cu_seqlens[-1] < max_item_length:
curr_cu_seqlens.append(max_item_length)
curr_indexes.extend(list(range(max_item_length - curr_cu_seqlens[-2])))
indexes.append(torch.tensor(curr_indexes, dtype=torch.long))
cu_seqlens.append(torch.tensor(curr_cu_seqlens, dtype=torch.int32))
worker_state_key_list.append(feat.pop('worker_state_key'))
worker_state_dict_list.append(feat.pop('worker_state_dict'))
worker_state_custom_infos_list.append(feat.pop('custom_infos', None))
num_padding_tokens += (max_item_length - feat['input_ids'].size(0))
cu_num_images_list.append(cu_num_images_list[-1] + feat['pixel_values'].size(0))
batch = data_collator(features=features, max_item_length=max_item_length, pad_id=pad_id)
# convert it to list in case it is converted into bf16
batch['loss_weight'] = torch.where(batch['labels'] == IGNORE_TOKEN_ID, 0, batch['loss_weight']).tolist()
batch['attention_mask'] = torch.stack(cu_seqlens)
batch['loss_reduction_all_gather'] = loss_reduction_all_gather
batch['statistics'] = torch.tensor(
[
num_samples,
num_padding_tokens,
batch['image_flags'].numel() - batch['image_flags'].sum().item(),
],
dtype=torch.long,
)
batch.pop('type_ids')
return batch
|