TongkunGuan's picture
Upload 94 files
841bef5 verified
raw
history blame
5.13 kB
# --------------------------------------------------------
# InternVL
# Copyright (c) 2024 OpenGVLab
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
from typing import List, Optional
import torch
import transformers
from torch.utils.data import Dataset, Sampler
from transformers.tokenization_utils_base import BatchEncoding
from transformers.trainer import (LengthGroupedSampler, RandomSampler,
has_length)
from transformers.trainer_pt_utils import logger
# copy from https://github.com/haotian-liu/LLaVA/blob/main/llava/train/llava_trainer.py#L38
def split_to_even_chunks(indices, lengths, num_chunks):
"""
Split a list of indices into `chunks` chunks of roughly equal lengths.
"""
if len(indices) % num_chunks != 0:
return [indices[i::num_chunks] for i in range(num_chunks)]
num_indices_per_chunk = len(indices) // num_chunks
chunks = [[] for _ in range(num_chunks)]
chunks_lengths = [0 for _ in range(num_chunks)]
for index in indices:
shortest_chunk = chunks_lengths.index(min(chunks_lengths))
chunks[shortest_chunk].append(index)
chunks_lengths[shortest_chunk] += lengths[index]
if len(chunks[shortest_chunk]) == num_indices_per_chunk:
chunks_lengths[shortest_chunk] = float('inf')
return chunks
# copy from https://github.com/haotian-liu/LLaVA/blob/main/llava/train/llava_trainer.py#L88
def get_length_grouped_indices(lengths, batch_size, world_size, generator=None, merge=True):
# We need to use torch for the random part as a distributed sampler will set the random seed for torch.
indices = torch.randperm(len(lengths), generator=generator)
megabatch_size = world_size * batch_size
megabatches = [indices[i : i + megabatch_size].tolist() for i in range(0, len(lengths), megabatch_size)]
megabatches = [sorted(megabatch, key=lambda i: lengths[i], reverse=True) for megabatch in megabatches]
megabatches = [split_to_even_chunks(megabatch, lengths, world_size) for megabatch in megabatches]
return [i for megabatch in megabatches for batch in megabatch for i in batch]
# modified from https://github.com/haotian-liu/LLaVA/blob/main/llava/train/llava_trainer.py#L99
class LengthGroupedSampler(Sampler):
r"""
Sampler that samples indices in a way that groups together features of the dataset of roughly the same length while
keeping a bit of randomness.
"""
def __init__(
self,
batch_size: int,
world_size: int,
dataset: Optional[Dataset] = None,
lengths: Optional[List[int]] = None,
model_input_name: Optional[str] = None,
generator=None,
):
if dataset is None and lengths is None:
raise ValueError('One of dataset and lengths must be provided.')
self.batch_size = batch_size
if lengths is None:
model_input_name = model_input_name if model_input_name is not None else 'input_ids'
if (
not (isinstance(dataset[0], dict) or isinstance(dataset[0], BatchEncoding))
or model_input_name not in dataset[0]
):
raise ValueError(
'Can only automatically infer lengths for datasets whose items are dictionaries with an '
f"'{model_input_name}' key."
)
lengths = [len(feature[model_input_name]) for feature in dataset]
elif isinstance(lengths, torch.Tensor):
logger.info(
'If lengths is a torch.Tensor, LengthGroupedSampler will be slow. Converting lengths to List[int]...'
)
lengths = lengths.tolist()
self.world_size = world_size
self.lengths = lengths
self.generator = generator
def __len__(self):
return len(self.lengths)
def __iter__(self):
indices = get_length_grouped_indices(self.lengths, self.batch_size, self.world_size, generator=self.generator)
return iter(indices)
# patch trainer
def _get_train_sampler(self) -> Optional[torch.utils.data.Sampler]:
if self.train_dataset is None or not has_length(self.train_dataset):
return None
# Build the sampler.
if self.args.group_by_length:
lengths = []
for dataset in self.train_dataset.datasets:
lengths = lengths + dataset.length
model_input_name = self.tokenizer.model_input_names[0] if self.tokenizer is not None else None
return LengthGroupedSampler(
self.args.train_batch_size,
world_size=self.args.world_size * self.args.gradient_accumulation_steps,
# self.args.train_batch_size * self.args.gradient_accumulation_steps,
dataset=self.train_dataset,
lengths=lengths,
model_input_name=model_input_name,
)
else:
return RandomSampler(self.train_dataset)
def replace_train_sampler():
transformers.Trainer._get_train_sampler = _get_train_sampler
# print('Replace train sampler!!')