# -------------------------------------------------------- # InternVL # Copyright (c) 2024 OpenGVLab # Licensed under The MIT License [see LICENSE for details] # -------------------------------------------------------- import math import torch from internvl.model.internvl_chat import InternVLChatConfig, InternVLChatModel from transformers import AutoTokenizer def split_model(num_layers, vit_alpha=0.5): device_map = {} world_size = torch.cuda.device_count() # Since the first GPU will be used for ViT, treat it as half a GPU. num_layers_per_gpu = math.ceil(num_layers / (world_size - vit_alpha)) num_layers_per_gpu = [num_layers_per_gpu] * world_size num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * (1 - vit_alpha)) layer_cnt = 0 for i, num_layer in enumerate(num_layers_per_gpu): for j in range(num_layer): device_map[f'language_model.model.layers.{layer_cnt}'] = i layer_cnt += 1 device_map['vision_model'] = 0 device_map['mlp1'] = 0 device_map['language_model.model.tok_embeddings'] = 0 device_map['language_model.model.embed_tokens'] = 0 device_map['language_model.output'] = 0 device_map['language_model.model.norm'] = 0 device_map['language_model.lm_head'] = 0 device_map[f'language_model.model.layers.{num_layers - 1}'] = 0 return device_map def load_model_and_tokenizer(args): if args.auto: config = InternVLChatConfig.from_pretrained(args.checkpoint) num_hidden_layers = config.llm_config.num_hidden_layers device_map = split_model(num_hidden_layers) kwargs = {'device_map': device_map} if args.auto else {} tokenizer = AutoTokenizer.from_pretrained(args.checkpoint, trust_remote_code=True, use_fast=False) model = InternVLChatModel.from_pretrained( args.checkpoint, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16, load_in_8bit=args.load_in_8bit, load_in_4bit=args.load_in_4bit, **kwargs).eval() if not args.load_in_8bit and not args.load_in_4bit and not args.auto: model = model.cuda() return model, tokenizer def load_model_and_tokenizer_customed(args): if args.auto: config = InternVLChatConfig.from_pretrained(args.checkpoint) num_hidden_layers = config.llm_config.num_hidden_layers device_map = split_model(num_hidden_layers) kwargs = {'device_map': device_map} if args.auto else {} tokenizer = AutoTokenizer.from_pretrained(args.checkpoint, trust_remote_code=True, use_fast=False) model = InternVLChatModel.from_pretrained( args.checkpoint, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16, load_in_8bit=args.load_in_8bit, load_in_4bit=args.load_in_4bit, **kwargs).eval() if not args.load_in_8bit and not args.load_in_4bit and not args.auto: del model.language_model.model.layers del model.language_model.output return model, tokenizer