File size: 6,481 Bytes
eec1ab5
17d4493
eec1ab5
21fd64b
 
 
 
 
 
c47030c
 
 
 
621c8c9
17d4493
 
 
 
 
 
 
 
 
b841cef
 
 
 
bb1a1ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17d4493
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21fd64b
17d4493
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4fa7fae
17d4493
 
 
5db0c58
 
 
bb1a1ab
 
 
 
 
17d4493
 
 
 
 
 
 
 
 
b841cef
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import spaces
import gradio as gr

import subprocess  # 🥲
subprocess.run(
    "pip install flash-attn --no-build-isolation",
    env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
    shell=True,
)
# subprocess.run(
#     "pip install git+https://github.com/LLaVA-VL/LLaVA-NeXT.git",
#     shell=True,
# )

import torch
from llava.model.builder import load_pretrained_model
from llava.mm_utils import get_model_name_from_path, process_images, tokenizer_image_token
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, IGNORE_INDEX
from llava.conversation import conv_templates, SeparatorStyle
import copy
import warnings
from decord import VideoReader, cpu
import numpy as np
import tempfile
import os
import shutil
#warnings.filterwarnings("ignore")
title = "# 🙋🏻‍♂️Welcome to 🌟Tonic's 🌋📹LLaVA-Video!"
description1 ="""The **🌋📹LLaVA-Video-7B-Qwen2** is a 7B parameter model  trained on the 🌋📹LLaVA-Video-178K dataset and the LLaVA-OneVision dataset. It is [based on the **Qwen2 language model**](https://huggingface.co/collections/Qwen/qwen2-6659360b33528ced941e557f), supporting a context window of up to 32K tokens. The model can process and interact with images, multi-images, and videos, with specific optimizations for video analysis.
This model leverages the **SO400M vision backbone** for visual input and Qwen2 for language processing, making it highly efficient in multi-modal reasoning, including visual and video-based tasks.
🌋📹LLaVA-Video has larger variants of [32B](https://huggingface.co/lmms-lab/LLaVA-NeXT-Video-32B-Qwen) and [72B](https://huggingface.co/lmms-lab/LLaVA-Video-72B-Qwen2) and with a [variant](https://huggingface.co/lmms-lab/LLaVA-Video-7B-Qwen2-Video-Only) only trained on the new synthetic data
For further details, please visit the [Project Page](https://github.com/LLaVA-VL/LLaVA-NeXT) or check out the corresponding [research paper](https://arxiv.org/abs/2410.02713).
"""
description2 ="""- **Architecture**: `LlavaQwenForCausalLM`
- **Attention Heads**: 28
- **Hidden Layers**: 28
- **Hidden Size**: 3584
- **Intermediate Size**: 18944
- **Max Frames Supported**: 64
- **Languages Supported**: English, Chinese
- **Image Aspect Ratio**: `anyres_max_9`
- **Image Resolution**: Various grid resolutions
- **Max Position Embeddings**: 32,768
- **Vocab Size**: 152,064
- **Model Precision**: bfloat16
- **Hardware Used for Training**: 256 * Nvidia Tesla A100 GPUs
"""

joinus = """
## Join us :
🌟TeamTonic🌟 is always making cool demos! Join our active builder's 🛠️community 👻 [![Join us on Discord](https://img.shields.io/discord/1109943800132010065?label=Discord&logo=discord&style=flat-square)](https://discord.gg/qdfnvSPcqP) On 🤗Huggingface:[MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to🌟 [Build Tonic](https://git.tonic-ai.com/contribute)🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗
"""

def load_video(video_path, max_frames_num, fps=1, force_sample=False):
    if max_frames_num == 0:
        return np.zeros((1, 336, 336, 3))
    vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
    total_frame_num = len(vr)
    video_time = total_frame_num / vr.get_avg_fps()
    fps = round(vr.get_avg_fps()/fps)
    frame_idx = [i for i in range(0, len(vr), fps)]
    frame_time = [i/fps for i in frame_idx]
    if len(frame_idx) > max_frames_num or force_sample:
        sample_fps = max_frames_num
        uniform_sampled_frames = np.linspace(0, total_frame_num - 1, sample_fps, dtype=int)
        frame_idx = uniform_sampled_frames.tolist()
        frame_time = [i/vr.get_avg_fps() for i in frame_idx]
    frame_time = ",".join([f"{i:.2f}s" for i in frame_time])
    spare_frames = vr.get_batch(frame_idx).asnumpy()
    return spare_frames, frame_time, video_time

# Load the model
pretrained = "lmms-lab/LLaVA-Video-7B-Qwen2"
model_name = "llava_qwen"
device = "cuda" if torch.cuda.is_available() else "cpu"
device_map = "auto"

print("Loading model...")
tokenizer, model, image_processor, max_length = load_pretrained_model(pretrained, None, model_name, torch_dtype="bfloat16", device_map=device_map)
model.eval()
print("Model loaded successfully!")

@spaces.GPU
def process_video(video_path, question):
    max_frames_num = 64
    video, frame_time, video_time = load_video(video_path, max_frames_num, 1, force_sample=True)
    video = image_processor.preprocess(video, return_tensors="pt")["pixel_values"].to(device).bfloat16()
    video = [video]

    conv_template = "qwen_1_5"
    time_instruction = f"The video lasts for {video_time:.2f} seconds, and {len(video[0])} frames are uniformly sampled from it. These frames are located at {frame_time}. Please answer the following questions related to this video."
    
    full_question = DEFAULT_IMAGE_TOKEN + f"{time_instruction}\n{question}"
    
    conv = copy.deepcopy(conv_templates[conv_template])
    conv.append_message(conv.roles[0], full_question)
    conv.append_message(conv.roles[1], None)
    prompt_question = conv.get_prompt()
    
    input_ids = tokenizer_image_token(prompt_question, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(device)
    
    with torch.no_grad():
        output = model.generate(
            input_ids,
            images=video,
            modalities=["video"],
            do_sample=False,
            temperature=0,
            max_new_tokens=4096,
        )
    
    response = tokenizer.batch_decode(output, skip_special_tokens=True)[0].strip()
    return response

def gradio_interface(video_file, question):
    if video_file is None:
        return "Please upload a video file."
    response = process_video(video_file, question)
    return response

with gr.Blocks() as demo:
    gr.Markdown("# LLaVA-Video-7B-Qwen2 Demo")
    gr.Markdown("Upload a video and ask a question about it.")
    
    with gr.Row():
        with gr.Column():
            video_input = gr.Video()
            question_input = gr.Textbox(label="Question", placeholder="Ask a question about the video...")
            submit_button = gr.Button("Submit")
    output = gr.Textbox(label="Response")
    
    submit_button.click(
        fn=gradio_interface,
        inputs=[video_input, question_input],
        outputs=output
    )

if __name__ == "__main__":
    demo.launch(show_error=True)