Spaces:
Running
on
Zero
Running
on
Zero
add demo
Browse files
app.py
CHANGED
@@ -28,11 +28,7 @@ import shutil
|
|
28 |
title = "# 🙋🏻♂️Welcome to 🌟Tonic's 🌋📹LLaVA-Video!"
|
29 |
description1 ="""The **🌋📹LLaVA-Video-7B-Qwen2** is a 7B parameter model trained on the 🌋📹LLaVA-Video-178K dataset and the LLaVA-OneVision dataset. It is [based on the **Qwen2 language model**](https://huggingface.co/collections/Qwen/qwen2-6659360b33528ced941e557f), supporting a context window of up to 32K tokens. The model can process and interact with images, multi-images, and videos, with specific optimizations for video analysis.
|
30 |
This model leverages the **SO400M vision backbone** for visual input and Qwen2 for language processing, making it highly efficient in multi-modal reasoning, including visual and video-based tasks.
|
31 |
-
<<<<<<< HEAD
|
32 |
🌋📹LLaVA-Video has larger variants of [32B](https://huggingface.co/lmms-lab/LLaVA-NeXT-Video-32B-Qwen) and [72B](https://huggingface.co/lmms-lab/LLaVA-Video-72B-Qwen2) and with a [variant](https://huggingface.co/lmms-lab/LLaVA-Video-7B-Qwen2-Video-Only) only trained on the new synthetic data
|
33 |
-
=======
|
34 |
-
🌋📹LLaVA-Video has larger variants of [32B](https://huggingface.co/lmms-lab/LLaVA-NeXT-Video-32B-Qwen) and [72B](https://huggingface.co/lmms-lab/LLaVA-Video-72B-Qwen2) and with a [variant](https://huggingface.co/lmms-lab/LLaVA-Video-7B-Qwen2-Video-Only only trained on the new synthetic data
|
35 |
-
>>>>>>> b297085e69127cc23e50f4a85219c4057e5ce2c5
|
36 |
For further details, please visit the [Project Page](https://github.com/LLaVA-VL/LLaVA-NeXT) or check out the corresponding [research paper](https://arxiv.org/abs/2410.02713).
|
37 |
"""
|
38 |
description2 ="""- **Architecture**: `LlavaQwenForCausalLM`
|
|
|
28 |
title = "# 🙋🏻♂️Welcome to 🌟Tonic's 🌋📹LLaVA-Video!"
|
29 |
description1 ="""The **🌋📹LLaVA-Video-7B-Qwen2** is a 7B parameter model trained on the 🌋📹LLaVA-Video-178K dataset and the LLaVA-OneVision dataset. It is [based on the **Qwen2 language model**](https://huggingface.co/collections/Qwen/qwen2-6659360b33528ced941e557f), supporting a context window of up to 32K tokens. The model can process and interact with images, multi-images, and videos, with specific optimizations for video analysis.
|
30 |
This model leverages the **SO400M vision backbone** for visual input and Qwen2 for language processing, making it highly efficient in multi-modal reasoning, including visual and video-based tasks.
|
|
|
31 |
🌋📹LLaVA-Video has larger variants of [32B](https://huggingface.co/lmms-lab/LLaVA-NeXT-Video-32B-Qwen) and [72B](https://huggingface.co/lmms-lab/LLaVA-Video-72B-Qwen2) and with a [variant](https://huggingface.co/lmms-lab/LLaVA-Video-7B-Qwen2-Video-Only) only trained on the new synthetic data
|
|
|
|
|
|
|
32 |
For further details, please visit the [Project Page](https://github.com/LLaVA-VL/LLaVA-NeXT) or check out the corresponding [research paper](https://arxiv.org/abs/2410.02713).
|
33 |
"""
|
34 |
description2 ="""- **Architecture**: `LlavaQwenForCausalLM`
|