File size: 4,959 Bytes
e10040f
 
 
 
 
 
6d32964
e10040f
651f3a2
e10040f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
651f3a2
e10040f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import json
from globe import title, description, customtool


model_path = "nvidia/Nemotron-Mini-4B-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path)

# Create a pipeline
pipe = pipeline("text-generation", model=model_path)
pipe.tokenizer = tokenizer  # Assign tokenizer manually

def create_prompt(system_message, user_message, tool_definition=""):
    if tool_definition:
        return f"""<extra_id_0>System
{system_message}

<tool>
{tool_definition}
</tool>
<context>
The current date is 2023-06-01.
</context>

<extra_id_1>User
{user_message}
<extra_id_1>Assistant
"""
    else:
        return f"<extra_id_0>System\n{system_message}\n\n<extra_id_1>User\n{user_message}\n<extra_id_1>Assistant\n"

def generate_response(message, history, system_message, max_tokens, temperature, top_p, use_pipeline=False, tool_definition=""):
    full_prompt = create_prompt(system_message, message, tool_definition)
    
    if use_pipeline:
        messages = [
            {"role": "system", "content": system_message},
            {"role": "user", "content": message},
        ]
        response = pipe(messages, max_new_tokens=max_tokens, temperature=temperature, top_p=top_p)[0]['generated_text']
    else:
        tokenized_chat = tokenizer.apply_chat_template(
            [
                {"role": "system", "content": system_message},
                {"role": "user", "content": message},
            ],
            tokenize=True,
            add_generation_prompt=True,
            return_tensors="pt"
        )
        
        with torch.no_grad():
            output_ids = model.generate(
                tokenized_chat,
                max_new_tokens=max_tokens,
                temperature=temperature,
                top_p=top_p,
                do_sample=True
            )
        
        response = tokenizer.decode(output_ids[0], skip_special_tokens=True)
    
    assistant_response = response.split("<extra_id_1>Assistant\n")[-1].strip()
    
    if tool_definition and "<toolcall>" in assistant_response:
        tool_call = assistant_response.split("<toolcall>")[1].split("</toolcall>")[0]
        assistant_response += f"\n\nTool Call: {tool_call}\n\nNote: This is a simulated tool call. In a real scenario, the tool would be executed and its output would be used to generate a final response."
    
    return assistant_response

with gr.Blocks() as demo:
    gr.Markdown("# πŸ€– Nemotron-Mini-4B-Instruct Demo with Custom Function Calling")
    gr.Markdown("This demo showcases the Nemotron-Mini-4B-Instruct model from NVIDIA, including optional custom function calling.")
    
    with gr.Row():
        with gr.Column(scale=3):
            chatbot = gr.Chatbot(height=400)
            msg = gr.Textbox(label="User Input", placeholder="Ask a question or request a task...")
            clear = gr.Button("Clear")
        
        with gr.Column(scale=2):
            system_message = gr.Textbox(
                label="System Message",
                value="You are a helpful AI assistant.",
                lines=2,
                placeholder="Set the AI's behavior and context..."
            )
            max_tokens = gr.Slider(minimum=1, maximum=1024, value=256, step=1, label="Max Tokens")
            temperature = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature")
            top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p")
            use_pipeline = gr.Checkbox(label="Use Pipeline", value=False)
            use_tool = gr.Checkbox(label="Use Function Calling", value=False)
            with gr.Column(visible=False) as tool_options:
                tool_definition = gr.Code(
                    label="Tool Definition (JSON)",
                    value=customtool,
                    lines=15,
                    language="json"
                    # placeholder="Enter the JSON definition of your custom tool..."
                )

    def user(user_message, history):
        return "", history + [[user_message, None]]

    def bot(history, system_message, max_tokens, temperature, top_p, use_pipeline, tool_definition):
        user_message = history[-1][0]
        bot_message = generate_response(user_message, history, system_message, max_tokens, temperature, top_p, use_pipeline, tool_definition)
        history[-1][1] = bot_message
        return history

    msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
        bot, [chatbot, system_message, max_tokens, temperature, top_p, use_pipeline, tool_definition], chatbot
    )
    clear.click(lambda: None, None, chatbot, queue=False)

    use_tool.change(
        fn=lambda x: gr.update(visible=x),
        inputs=[use_tool],
        outputs=[tool_options]
    )

if __name__ == "__main__":
    demo.launch()