Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline | |
import json | |
from globe import title, description, customtool , presentation1, presentation2, joinus | |
import spaces | |
model_path = "nvidia/Nemotron-Mini-4B-Instruct" | |
tokenizer = AutoTokenizer.from_pretrained(model_path) | |
model = AutoModelForCausalLM.from_pretrained(model_path) | |
# Create a pipeline | |
pipe = pipeline("text-generation", model=model_path) | |
pipe.tokenizer = tokenizer # Assign tokenizer manually | |
def create_prompt(system_message, user_message, tool_definition="", context=""): | |
if tool_definition: | |
return f"""<extra_id_0>System | |
{system_message} | |
<tool> | |
{tool_definition} | |
</tool> | |
<context> | |
{context} | |
</context> | |
<extra_id_1>User | |
{user_message} | |
<extra_id_1>Assistant | |
""" | |
else: | |
return f"<extra_id_0>System\n{system_message}\n\n<extra_id_1>User\n{user_message}\n<extra_id_1>Assistant\n" | |
def generate_response(message, history, system_message, max_tokens, temperature, top_p, use_pipeline=False, tool_definition="", context=""): | |
full_prompt = create_prompt(system_message, message, tool_definition, context) | |
if use_pipeline: | |
messages = [ | |
{"role": "system", "content": system_message}, | |
{"role": "user", "content": message}, | |
] | |
response = pipe(messages, max_new_tokens=max_tokens, temperature=temperature, top_p=top_p)[0]['generated_text'] | |
else: | |
tokenized_chat = tokenizer.apply_chat_template( | |
[ | |
{"role": "system", "content": system_message}, | |
{"role": "user", "content": message}, | |
], | |
tokenize=True, | |
add_generation_prompt=True, | |
return_tensors="pt" | |
) | |
with torch.no_grad(): | |
output_ids = model.generate( | |
tokenized_chat, | |
max_new_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
do_sample=True | |
) | |
response = tokenizer.decode(output_ids[0], skip_special_tokens=True) | |
assistant_response = response.split("<extra_id_1>Assistant\n")[-1].strip() | |
if tool_definition and "<toolcall>" in assistant_response: | |
tool_call = assistant_response.split("<toolcall>")[1].split("</toolcall>")[0] | |
assistant_response += f"\n\nTool Call: {tool_call}\n\nNote: This is a simulated tool call. In a real scenario, the tool would be executed and its output would be used to generate a final response." | |
return assistant_response | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
gr.Markdown(title) | |
with gr.Row(): | |
gr.Markdown(description) | |
with gr.Row(): | |
with gr.Group(): | |
gr.Markdown(presentation1) | |
with gr.Group(): | |
gr.Markdown(presentation2) | |
with gr.Row(): | |
gr.Markdown(joinus) | |
with gr.Row(): | |
with gr.Column(scale=3): | |
chatbot = gr.Chatbot(height=400) | |
msg = gr.Textbox(label="User Input", placeholder="Ask a question or request a task...") | |
with gr.Accordion(label="🧪Advanced Settings", open=False): | |
system_message = gr.Textbox( | |
label="System Message", | |
value="You are a helpful AI assistant.", | |
lines=2, | |
placeholder="Set the AI's behavior and context..." | |
) | |
context = gr.Textbox( | |
label="Context", | |
lines=2, | |
placeholder="Enter additional context information..." | |
) | |
max_tokens = gr.Slider(minimum=1, maximum=1024, value=256, step=1, label="Max Tokens") | |
temperature = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature") | |
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p") | |
use_pipeline = gr.Checkbox(label="Use Pipeline", value=False) | |
use_tool = gr.Checkbox(label="Use Function Calling", value=False) | |
with gr.Column(visible=False) as tool_options: | |
tool_definition = gr.Code( | |
label="Tool Definition (JSON)", | |
value=customtool, | |
lines=15, | |
language="json" | |
) | |
with gr.Row(): | |
clear = gr.Button("Clear") | |
send = gr.Button("Send") | |
def user(user_message, history): | |
return "", history + [[user_message, None]] | |
def bot(history, system_message, max_tokens, temperature, top_p, use_pipeline, tool_definition, context): | |
user_message = history[-1][0] | |
bot_message = generate_response(user_message, history, system_message, max_tokens, temperature, top_p, use_pipeline, tool_definition, context) | |
history[-1][1] = bot_message | |
return history | |
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then( | |
bot, [chatbot, system_message, max_tokens, temperature, top_p, use_pipeline, tool_definition, context], chatbot | |
) | |
send.click(user, [msg, chatbot], [msg, chatbot], queue=False).then( | |
bot, [chatbot, system_message, max_tokens, temperature, top_p, use_pipeline, tool_definition, context], chatbot | |
) | |
clear.click(lambda: None, None, chatbot, queue=False) | |
use_tool.change( | |
fn=lambda x: gr.update(visible=x), | |
inputs=[use_tool], | |
outputs=[tool_options] | |
) | |
if __name__ == "__main__": | |
demo.launch() |