Spaces:
Sleeping
Sleeping
# mypy: allow-untyped-defs | |
import warnings | |
from typing import Optional, Tuple | |
import torch | |
from torch import Tensor | |
from .linear import NonDynamicallyQuantizableLinear | |
from torch.nn.init import constant_, xavier_normal_, xavier_uniform_ | |
from torch.nn.parameter import Parameter | |
from .module import Module | |
from .. import functional as F | |
__all__ = ['Threshold', 'ReLU', 'RReLU', 'Hardtanh', 'ReLU6', 'Sigmoid', 'Hardsigmoid', 'Tanh', | |
'SiLU', 'Mish', 'Hardswish', 'ELU', 'CELU', 'SELU', 'GLU', 'GELU', 'Hardshrink', 'LeakyReLU', | |
'LogSigmoid', 'Softplus', 'Softshrink', 'MultiheadAttention', 'PReLU', 'Softsign', 'Tanhshrink', | |
'Softmin', 'Softmax', 'Softmax2d', 'LogSoftmax'] | |
[docs]class Threshold(Module): | |
r"""Thresholds each element of the input Tensor. | |
Threshold is defined as: | |
.. math:: | |
y = | |
\begin{cases} | |
x, &\text{ if } x > \text{threshold} \\ | |
\text{value}, &\text{ otherwise } | |
\end{cases} | |
Args: | |
threshold: The value to threshold at | |
value: The value to replace with | |
inplace: can optionally do the operation in-place. Default: ``False`` | |
Shape: | |
- Input: :math:`(*)`, where :math:`*` means any number of dimensions. | |
- Output: :math:`(*)`, same shape as the input. | |
Examples:: | |
>>> m = nn.Threshold(0.1, 20) | |
>>> input = torch.randn(2) | |
>>> output = m(input) | |
""" | |
__constants__ = ['threshold', 'value', 'inplace'] | |
threshold: float | |
value: float | |
inplace: bool | |
def __init__(self, threshold: float, value: float, inplace: bool = False) -> None: | |
super().__init__() | |
self.threshold = threshold | |
self.value = value | |
self.inplace = inplace | |
# TODO: check in THNN (if inplace == True, then assert value <= threshold) | |
def forward(self, input: Tensor) -> Tensor: | |
return F.threshold(input, self.threshold, self.value, self.inplace) | |
def extra_repr(self): | |
inplace_str = ', inplace=True' if self.inplace else '' | |
return f'threshold={self.threshold}, value={self.value}{inplace_str}' | |
[docs]class ReLU(Module): | |
r"""Applies the rectified linear unit function element-wise. | |
:math:`\text{ReLU}(x) = (x)^+ = \max(0, x)` | |
Args: | |
inplace: can optionally do the operation in-place. Default: ``False`` | |
Shape: | |
- Input: :math:`(*)`, where :math:`*` means any number of dimensions. | |
- Output: :math:`(*)`, same shape as the input. | |
.. image:: ../scripts/activation_images/ReLU.png | |
Examples:: | |
>>> m = nn.ReLU() | |
>>> input = torch.randn(2) | |
>>> output = m(input) | |
An implementation of CReLU - https://arxiv.org/abs/1603.05201 | |
>>> m = nn.ReLU() | |
>>> input = torch.randn(2).unsqueeze(0) | |
>>> output = torch.cat((m(input), m(-input))) | |
""" | |
__constants__ = ['inplace'] | |
inplace: bool | |
def __init__(self, inplace: bool = False): | |
super().__init__() | |
self.inplace = inplace | |
def forward(self, input: Tensor) -> Tensor: | |
return F.relu(input, inplace=self.inplace) | |
def extra_repr(self) -> str: | |
inplace_str = 'inplace=True' if self.inplace else '' | |
return inplace_str | |
[docs]class RReLU(Module): | |
r"""Applies the randomized leaky rectified linear unit function, element-wise. | |
Method described in the paper: | |
`Empirical Evaluation of Rectified Activations in Convolutional Network <https://arxiv.org/abs/1505.00853>`_. | |
The function is defined as: | |
.. math:: | |
\text{RReLU}(x) = | |
\begin{cases} | |
x & \text{if } x \geq 0 \\ | |
ax & \text{ otherwise } | |
\end{cases} | |
where :math:`a` is randomly sampled from uniform distribution | |
:math:`\mathcal{U}(\text{lower}, \text{upper})` during training while during | |
evaluation :math:`a` is fixed with :math:`a = \frac{\text{lower} + \text{upper}}{2}`. | |
Args: | |
lower: lower bound of the uniform distribution. Default: :math:`\frac{1}{8}` | |
upper: upper bound of the uniform distribution. Default: :math:`\frac{1}{3}` | |
inplace: can optionally do the operation in-place. Default: ``False`` | |
Shape: | |
- Input: :math:`(*)`, where :math:`*` means any number of dimensions. | |
- Output: :math:`(*)`, same shape as the input. | |
.. image:: ../scripts/activation_images/RReLU.png | |
Examples:: | |
>>> m = nn.RReLU(0.1, 0.3) | |
>>> input = torch.randn(2) | |
>>> output = m(input) | |
""" | |
__constants__ = ['lower', 'upper', 'inplace'] | |
lower: float | |
upper: float | |
inplace: bool | |
def __init__( | |
self, | |
lower: float = 1. / 8, | |
upper: float = 1. / 3, | |
inplace: bool = False | |
): | |
super().__init__() | |
self.lower = lower | |
self.upper = upper | |
self.inplace = inplace | |
def forward(self, input: Tensor) -> Tensor: | |
return F.rrelu(input, self.lower, self.upper, self.training, self.inplace) | |
def extra_repr(self): | |
inplace_str = ', inplace=True' if self.inplace else '' | |
return f'lower={self.lower}, upper={self.upper}{inplace_str}' | |
[docs]class Hardtanh(Module): | |
r"""Applies the HardTanh function element-wise. | |
HardTanh is defined as: | |
.. math:: | |
\text{HardTanh}(x) = \begin{cases} | |
\text{max\_val} & \text{ if } x > \text{ max\_val } \\ | |
\text{min\_val} & \text{ if } x < \text{ min\_val } \\ | |
x & \text{ otherwise } \\ | |
\end{cases} | |
Args: | |
min_val: minimum value of the linear region range. Default: -1 | |
max_val: maximum value of the linear region range. Default: 1 | |
inplace: can optionally do the operation in-place. Default: ``False`` | |
Keyword arguments :attr:`min_value` and :attr:`max_value` | |
have been deprecated in favor of :attr:`min_val` and :attr:`max_val`. | |
Shape: | |
- Input: :math:`(*)`, where :math:`*` means any number of dimensions. | |
- Output: :math:`(*)`, same shape as the input. | |
.. image:: ../scripts/activation_images/Hardtanh.png | |
Examples:: | |
>>> m = nn.Hardtanh(-2, 2) | |
>>> input = torch.randn(2) | |
>>> output = m(input) | |
""" | |
__constants__ = ['min_val', 'max_val', 'inplace'] | |
min_val: float | |
max_val: float | |
inplace: bool | |
def __init__( | |
self, | |
min_val: float = -1., | |
max_val: float = 1., | |
inplace: bool = False, | |
min_value: Optional[float] = None, | |
max_value: Optional[float] = None | |
) -> None: | |
super().__init__() | |
if min_value is not None: | |
warnings.warn( | |
"keyword argument `min_value` is deprecated and rename to `min_val`", | |
FutureWarning, | |
stacklevel=2, | |
) | |
min_val = min_value | |
if max_value is not None: | |
warnings.warn( | |
"keyword argument `max_value` is deprecated and rename to `max_val`", | |
FutureWarning, | |
stacklevel=2, | |
) | |
max_val = max_value | |
self.min_val = min_val | |
self.max_val = max_val | |
self.inplace = inplace | |
assert self.max_val > self.min_val | |
def forward(self, input: Tensor) -> Tensor: | |
return F.hardtanh(input, self.min_val, self.max_val, self.inplace) | |
def extra_repr(self) -> str: | |
inplace_str = ', inplace=True' if self.inplace else '' | |
return f'min_val={self.min_val}, max_val={self.max_val}{inplace_str}' | |
[docs]class ReLU6(Hardtanh): | |
r"""Applies the ReLU6 function element-wise. | |
.. math:: | |
\text{ReLU6}(x) = \min(\max(0,x), 6) | |
Args: | |
inplace: can optionally do the operation in-place. Default: ``False`` | |
Shape: | |
- Input: :math:`(*)`, where :math:`*` means any number of dimensions. | |
- Output: :math:`(*)`, same shape as the input. | |
.. image:: ../scripts/activation_images/ReLU6.png | |
Examples:: | |
>>> m = nn.ReLU6() | |
>>> input = torch.randn(2) | |
>>> output = m(input) | |
""" | |
def __init__(self, inplace: bool = False): | |
super().__init__(0., 6., inplace) | |
def extra_repr(self) -> str: | |
inplace_str = 'inplace=True' if self.inplace else '' | |
return inplace_str | |
[docs]class Sigmoid(Module): | |
r"""Applies the Sigmoid function element-wise. | |
.. math:: | |
\text{Sigmoid}(x) = \sigma(x) = \frac{1}{1 + \exp(-x)} | |
Shape: | |
- Input: :math:`(*)`, where :math:`*` means any number of dimensions. | |
- Output: :math:`(*)`, same shape as the input. | |
.. image:: ../scripts/activation_images/Sigmoid.png | |
Examples:: | |
>>> m = nn.Sigmoid() | |
>>> input = torch.randn(2) | |
>>> output = m(input) | |
""" | |
def forward(self, input: Tensor) -> Tensor: | |
return torch.sigmoid(input) | |
[docs]class Hardsigmoid(Module): | |
r"""Applies the Hardsigmoid function element-wise. | |
Hardsigmoid is defined as: | |
.. math:: | |
\text{Hardsigmoid}(x) = \begin{cases} | |
0 & \text{if~} x \le -3, \\ | |
1 & \text{if~} x \ge +3, \\ | |
x / 6 + 1 / 2 & \text{otherwise} | |
\end{cases} | |
Args: | |
inplace: can optionally do the operation in-place. Default: ``False`` | |
Shape: | |
- Input: :math:`(*)`, where :math:`*` means any number of dimensions. | |
- Output: :math:`(*)`, same shape as the input. | |
.. image:: ../scripts/activation_images/Hardsigmoid.png | |
Examples:: | |
>>> m = nn.Hardsigmoid() | |
>>> input = torch.randn(2) | |
>>> output = m(input) | |
""" | |
__constants__ = ['inplace'] | |
inplace: bool | |
def __init__(self, inplace : bool = False) -> None: | |
super().__init__() | |
self.inplace = inplace | |
def forward(self, input: Tensor) -> Tensor: | |
return F.hardsigmoid(input, self.inplace) | |
[docs]class Tanh(Module): | |
r"""Applies the Hyperbolic Tangent (Tanh) function element-wise. | |
Tanh is defined as: | |
.. math:: | |
\text{Tanh}(x) = \tanh(x) = \frac{\exp(x) - \exp(-x)} {\exp(x) + \exp(-x)} | |
Shape: | |
- Input: :math:`(*)`, where :math:`*` means any number of dimensions. | |
- Output: :math:`(*)`, same shape as the input. | |
.. image:: ../scripts/activation_images/Tanh.png | |
Examples:: | |
>>> m = nn.Tanh() | |
>>> input = torch.randn(2) | |
>>> output = m(input) | |
""" | |
def forward(self, input: Tensor) -> Tensor: | |
return torch.tanh(input) | |
[docs]class SiLU(Module): | |
r"""Applies the Sigmoid Linear Unit (SiLU) function, element-wise. | |
The SiLU function is also known as the swish function. | |
.. math:: | |
\text{silu}(x) = x * \sigma(x), \text{where } \sigma(x) \text{ is the logistic sigmoid.} | |
.. note:: | |
See `Gaussian Error Linear Units (GELUs) <https://arxiv.org/abs/1606.08415>`_ | |
where the SiLU (Sigmoid Linear Unit) was originally coined, and see | |
`Sigmoid-Weighted Linear Units for Neural Network Function Approximation | |
in Reinforcement Learning <https://arxiv.org/abs/1702.03118>`_ and `Swish: | |
a Self-Gated Activation Function <https://arxiv.org/abs/1710.05941v1>`_ | |
where the SiLU was experimented with later. | |
Shape: | |
- Input: :math:`(*)`, where :math:`*` means any number of dimensions. | |
- Output: :math:`(*)`, same shape as the input. | |
.. image:: ../scripts/activation_images/SiLU.png | |
Examples:: | |
>>> m = nn.SiLU() | |
>>> input = torch.randn(2) | |
>>> output = m(input) | |
""" | |
__constants__ = ['inplace'] | |
inplace: bool | |
def __init__(self, inplace: bool = False): | |
super().__init__() | |
self.inplace = inplace | |
def forward(self, input: Tensor) -> Tensor: | |
return F.silu(input, inplace=self.inplace) | |
def extra_repr(self) -> str: | |
inplace_str = 'inplace=True' if self.inplace else '' | |
return inplace_str | |
[docs]class Mish(Module): | |
r"""Applies the Mish function, element-wise. | |
Mish: A Self Regularized Non-Monotonic Neural Activation Function. | |
.. math:: | |
\text{Mish}(x) = x * \text{Tanh}(\text{Softplus}(x)) | |
.. note:: | |
See `Mish: A Self Regularized Non-Monotonic Neural Activation Function <https://arxiv.org/abs/1908.08681>`_ | |
Shape: | |
- Input: :math:`(*)`, where :math:`*` means any number of dimensions. | |
- Output: :math:`(*)`, same shape as the input. | |
.. image:: ../scripts/activation_images/Mish.png | |
Examples:: | |
>>> m = nn.Mish() | |
>>> input = torch.randn(2) | |
>>> output = m(input) | |
""" | |
__constants__ = ['inplace'] | |
inplace: bool | |
def __init__(self, inplace: bool = False): | |
super().__init__() | |
self.inplace = inplace | |
def forward(self, input: Tensor) -> Tensor: | |
return F.mish(input, inplace=self.inplace) | |
def extra_repr(self) -> str: | |
inplace_str = 'inplace=True' if self.inplace else '' | |
return inplace_str | |
[docs]class Hardswish(Module): | |
r"""Applies the Hardswish function, element-wise. | |
Method described in the paper: `Searching for MobileNetV3 <https://arxiv.org/abs/1905.02244>`_. | |
Hardswish is defined as: | |
.. math:: | |
\text{Hardswish}(x) = \begin{cases} | |
0 & \text{if~} x \le -3, \\ | |
x & \text{if~} x \ge +3, \\ | |
x \cdot (x + 3) /6 & \text{otherwise} | |
\end{cases} | |
Args: | |
inplace: can optionally do the operation in-place. Default: ``False`` | |
Shape: | |
- Input: :math:`(*)`, where :math:`*` means any number of dimensions. | |
- Output: :math:`(*)`, same shape as the input. | |
.. image:: ../scripts/activation_images/Hardswish.png | |
Examples:: | |
>>> m = nn.Hardswish() | |
>>> input = torch.randn(2) | |
>>> output = m(input) | |
""" | |
__constants__ = ['inplace'] | |
inplace: bool | |
def __init__(self, inplace : bool = False) -> None: | |
super().__init__() | |
self.inplace = inplace | |
def forward(self, input: Tensor) -> Tensor: | |
return F.hardswish(input, self.inplace) | |
[docs]class ELU(Module): | |
r"""Applies the Exponential Linear Unit (ELU) function, element-wise. | |
Method described in the paper: `Fast and Accurate Deep Network Learning by Exponential Linear | |
Units (ELUs) <https://arxiv.org/abs/1511.07289>`__. | |
ELU is defined as: | |
.. math:: | |
\text{ELU}(x) = \begin{cases} | |
x, & \text{ if } x > 0\\ | |
\alpha * (\exp(x) - 1), & \text{ if } x \leq 0 | |
\end{cases} | |
Args: | |
alpha: the :math:`\alpha` value for the ELU formulation. Default: 1.0 | |
inplace: can optionally do the operation in-place. Default: ``False`` | |
Shape: | |
- Input: :math:`(*)`, where :math:`*` means any number of dimensions. | |
- Output: :math:`(*)`, same shape as the input. | |
.. image:: ../scripts/activation_images/ELU.png | |
Examples:: | |
>>> m = nn.ELU() | |
>>> input = torch.randn(2) | |
>>> output = m(input) | |
""" | |
__constants__ = ['alpha', 'inplace'] | |
alpha: float | |
inplace: bool | |
def __init__(self, alpha: float = 1., inplace: bool = False) -> None: | |
super().__init__() | |
self.alpha = alpha | |
self.inplace = inplace | |
def forward(self, input: Tensor) -> Tensor: | |
return F.elu(input, self.alpha, self.inplace) | |
def extra_repr(self) -> str: | |
inplace_str = ', inplace=True' if self.inplace else '' | |
return f'alpha={self.alpha}{inplace_str}' | |
[docs]class CELU(Module): | |
r"""Applies the CELU function element-wise. | |
.. math:: | |
\text{CELU}(x) = \max(0,x) + \min(0, \alpha * (\exp(x/\alpha) - 1)) | |
More details can be found in the paper `Continuously Differentiable Exponential Linear Units`_ . | |
Args: | |
alpha: the :math:`\alpha` value for the CELU formulation. Default: 1.0 | |
inplace: can optionally do the operation in-place. Default: ``False`` | |
Shape: | |
- Input: :math:`(*)`, where :math:`*` means any number of dimensions. | |
- Output: :math:`(*)`, same shape as the input. | |
.. image:: ../scripts/activation_images/CELU.png | |
Examples:: | |
>>> m = nn.CELU() | |
>>> input = torch.randn(2) | |
>>> output = m(input) | |
.. _`Continuously Differentiable Exponential Linear Units`: | |
https://arxiv.org/abs/1704.07483 | |
""" | |
__constants__ = ['alpha', 'inplace'] | |
alpha: float | |
inplace: bool | |
def __init__(self, alpha: float = 1., inplace: bool = False) -> None: | |
super().__init__() | |
self.alpha = alpha | |
self.inplace = inplace | |
def forward(self, input: Tensor) -> Tensor: | |
return F.celu(input, self.alpha, self.inplace) | |
def extra_repr(self) -> str: | |
inplace_str = ', inplace=True' if self.inplace else '' | |
return f'alpha={self.alpha}{inplace_str}' | |
[docs]class SELU(Module): | |
r"""Applies the SELU function element-wise. | |
.. math:: | |
\text{SELU}(x) = \text{scale} * (\max(0,x) + \min(0, \alpha * (\exp(x) - 1))) | |
with :math:`\alpha = 1.6732632423543772848170429916717` and | |
:math:`\text{scale} = 1.0507009873554804934193349852946`. | |
.. warning:: | |
When using ``kaiming_normal`` or ``kaiming_normal_`` for initialisation, | |
``nonlinearity='linear'`` should be used instead of ``nonlinearity='selu'`` | |
in order to get `Self-Normalizing Neural Networks`_. | |
See :func:`torch.nn.init.calculate_gain` for more information. | |
More details can be found in the paper `Self-Normalizing Neural Networks`_ . | |
Args: | |
inplace (bool, optional): can optionally do the operation in-place. Default: ``False`` | |
Shape: | |
- Input: :math:`(*)`, where :math:`*` means any number of dimensions. | |
- Output: :math:`(*)`, same shape as the input. | |
.. image:: ../scripts/activation_images/SELU.png | |
Examples:: | |
>>> m = nn.SELU() | |
>>> input = torch.randn(2) | |
>>> output = m(input) | |
.. _Self-Normalizing Neural Networks: https://arxiv.org/abs/1706.02515 | |
""" | |
__constants__ = ['inplace'] | |
inplace: bool | |
def __init__(self, inplace: bool = False) -> None: | |
super().__init__() | |
self.inplace = inplace | |
def forward(self, input: Tensor) -> Tensor: | |
return F.selu(input, self.inplace) | |
def extra_repr(self) -> str: | |
inplace_str = 'inplace=True' if self.inplace else '' | |
return inplace_str | |
[docs]class GLU(Module): | |
r"""Applies the gated linear unit function. | |
:math:`{GLU}(a, b)= a \otimes \sigma(b)` where :math:`a` is the first half | |
of the input matrices and :math:`b` is the second half. | |
Args: | |
dim (int): the dimension on which to split the input. Default: -1 | |
Shape: | |
- Input: :math:`(\ast_1, N, \ast_2)` where `*` means, any number of additional | |
dimensions | |
- Output: :math:`(\ast_1, M, \ast_2)` where :math:`M=N/2` | |
Examples:: | |
>>> m = nn.GLU() | |
>>> input = torch.randn(4, 2) | |
>>> output = m(input) | |
""" | |
__constants__ = ['dim'] | |
dim: int | |
def __init__(self, dim: int = -1) -> None: | |
super().__init__() | |
self.dim = dim | |
def forward(self, input: Tensor) -> Tensor: | |
return F.glu(input, self.dim) | |
def extra_repr(self) -> str: | |
return f'dim={self.dim}' | |
[docs]class GELU(Module): | |
r"""Applies the Gaussian Error Linear Units function. | |
.. math:: \text{GELU}(x) = x * \Phi(x) | |
where :math:`\Phi(x)` is the Cumulative Distribution Function for Gaussian Distribution. | |
When the approximate argument is 'tanh', Gelu is estimated with: | |
.. math:: \text{GELU}(x) = 0.5 * x * (1 + \text{Tanh}(\sqrt{2 / \pi} * (x + 0.044715 * x^3))) | |
Args: | |
approximate (str, optional): the gelu approximation algorithm to use: | |
``'none'`` | ``'tanh'``. Default: ``'none'`` | |
Shape: | |
- Input: :math:`(*)`, where :math:`*` means any number of dimensions. | |
- Output: :math:`(*)`, same shape as the input. | |
.. image:: ../scripts/activation_images/GELU.png | |
Examples:: | |
>>> m = nn.GELU() | |
>>> input = torch.randn(2) | |
>>> output = m(input) | |
""" | |
__constants__ = ['approximate'] | |
approximate: str | |
def __init__(self, approximate: str = 'none') -> None: | |
super().__init__() | |
self.approximate = approximate | |
def forward(self, input: Tensor) -> Tensor: | |
return F.gelu(input, approximate=self.approximate) | |
def extra_repr(self) -> str: | |
return f'approximate={repr(self.approximate)}' | |
[docs]class Hardshrink(Module): | |
r"""Applies the Hard Shrinkage (Hardshrink) function element-wise. | |
Hardshrink is defined as: | |
.. math:: | |
\text{HardShrink}(x) = | |
\begin{cases} | |
x, & \text{ if } x > \lambda \\ | |
x, & \text{ if } x < -\lambda \\ | |
0, & \text{ otherwise } | |
\end{cases} | |
Args: | |
lambd: the :math:`\lambda` value for the Hardshrink formulation. Default: 0.5 | |
Shape: | |
- Input: :math:`(*)`, where :math:`*` means any number of dimensions. | |
- Output: :math:`(*)`, same shape as the input. | |
.. image:: ../scripts/activation_images/Hardshrink.png | |
Examples:: | |
>>> m = nn.Hardshrink() | |
>>> input = torch.randn(2) | |
>>> output = m(input) | |
""" | |
__constants__ = ['lambd'] | |
lambd: float | |
def __init__(self, lambd: float = 0.5) -> None: | |
super().__init__() | |
self.lambd = lambd | |
def forward(self, input: Tensor) -> Tensor: | |
return F.hardshrink(input, self.lambd) | |
def extra_repr(self) -> str: | |
return f'{self.lambd}' | |
[docs]class LeakyReLU(Module): | |
r"""Applies the LeakyReLU function element-wise. | |
.. math:: | |
\text{LeakyReLU}(x) = \max(0, x) + \text{negative\_slope} * \min(0, x) | |
or | |
.. math:: | |
\text{LeakyReLU}(x) = | |
\begin{cases} | |
x, & \text{ if } x \geq 0 \\ | |
\text{negative\_slope} \times x, & \text{ otherwise } | |
\end{cases} | |
Args: | |
negative_slope: Controls the angle of the negative slope (which is used for | |
negative input values). Default: 1e-2 | |
inplace: can optionally do the operation in-place. Default: ``False`` | |
Shape: | |
- Input: :math:`(*)` where `*` means, any number of additional | |
dimensions | |
- Output: :math:`(*)`, same shape as the input | |
.. image:: ../scripts/activation_images/LeakyReLU.png | |
Examples:: | |
>>> m = nn.LeakyReLU(0.1) | |
>>> input = torch.randn(2) | |
>>> output = m(input) | |
""" | |
__constants__ = ['inplace', 'negative_slope'] | |
inplace: bool | |
negative_slope: float | |
def __init__(self, negative_slope: float = 1e-2, inplace: bool = False) -> None: | |
super().__init__() | |
self.negative_slope = negative_slope | |
self.inplace = inplace | |
def forward(self, input: Tensor) -> Tensor: | |
return F.leaky_relu(input, self.negative_slope, self.inplace) | |
def extra_repr(self) -> str: | |
inplace_str = ', inplace=True' if self.inplace else '' | |
return f'negative_slope={self.negative_slope}{inplace_str}' | |
[docs]class LogSigmoid(Module): | |
r"""Applies the Logsigmoid function element-wise. | |
.. math:: | |
\text{LogSigmoid}(x) = \log\left(\frac{ 1 }{ 1 + \exp(-x)}\right) | |
Shape: | |
- Input: :math:`(*)`, where :math:`*` means any number of dimensions. | |
- Output: :math:`(*)`, same shape as the input. | |
.. image:: ../scripts/activation_images/LogSigmoid.png | |
Examples:: | |
>>> m = nn.LogSigmoid() | |
>>> input = torch.randn(2) | |
>>> output = m(input) | |
""" | |
def forward(self, input: Tensor) -> Tensor: | |
return F.logsigmoid(input) | |
[docs]class Softplus(Module): | |
r"""Applies the Softplus function element-wise. | |
.. math:: | |
\text{Softplus}(x) = \frac{1}{\beta} * \log(1 + \exp(\beta * x)) | |
SoftPlus is a smooth approximation to the ReLU function and can be used | |
to constrain the output of a machine to always be positive. | |
For numerical stability the implementation reverts to the linear function | |
when :math:`input \times \beta > threshold`. | |
Args: | |
beta: the :math:`\beta` value for the Softplus formulation. Default: 1 | |
threshold: values above this revert to a linear function. Default: 20 | |
Shape: | |
- Input: :math:`(*)`, where :math:`*` means any number of dimensions. | |
- Output: :math:`(*)`, same shape as the input. | |
.. image:: ../scripts/activation_images/Softplus.png | |
Examples:: | |
>>> m = nn.Softplus() | |
>>> input = torch.randn(2) | |
>>> output = m(input) | |
""" | |
__constants__ = ['beta', 'threshold'] | |
beta: float | |
threshold: float | |
def __init__(self, beta: float = 1.0, threshold: float = 20.0) -> None: | |
super().__init__() | |
self.beta = beta | |
self.threshold = threshold | |
def forward(self, input: Tensor) -> Tensor: | |
return F.softplus(input, self.beta, self.threshold) | |
def extra_repr(self) -> str: | |
return f'beta={self.beta}, threshold={self.threshold}' | |
[docs]class Softshrink(Module): | |
r"""Applies the soft shrinkage function element-wise. | |
.. math:: | |
\text{SoftShrinkage}(x) = | |
\begin{cases} | |
x - \lambda, & \text{ if } x > \lambda \\ | |
x + \lambda, & \text{ if } x < -\lambda \\ | |
0, & \text{ otherwise } | |
\end{cases} | |
Args: | |
lambd: the :math:`\lambda` (must be no less than zero) value for the Softshrink formulation. Default: 0.5 | |
Shape: | |
- Input: :math:`(*)`, where :math:`*` means any number of dimensions. | |
- Output: :math:`(*)`, same shape as the input. | |
.. image:: ../scripts/activation_images/Softshrink.png | |
Examples:: | |
>>> m = nn.Softshrink() | |
>>> input = torch.randn(2) | |
>>> output = m(input) | |
""" | |
__constants__ = ['lambd'] | |
lambd: float | |
def __init__(self, lambd: float = 0.5) -> None: | |
super().__init__() | |
self.lambd = lambd | |
def forward(self, input: Tensor) -> Tensor: | |
return F.softshrink(input, self.lambd) | |
def extra_repr(self) -> str: | |
return str(self.lambd) | |
def _check_arg_device(x: Optional[torch.Tensor]) -> bool: | |
if x is not None: | |
return x.device.type in ["cpu", "cuda", torch.utils.backend_registration._privateuse1_backend_name] | |
return True | |
def _arg_requires_grad(x: Optional[torch.Tensor]) -> bool: | |
if x is not None: | |
return x.requires_grad | |
return False | |
def _is_make_fx_tracing(): | |
if not torch.jit.is_scripting(): | |
torch_dispatch_mode_stack = torch.utils._python_dispatch._get_current_dispatch_mode_stack() | |
return any(type(x) == torch.fx.experimental.proxy_tensor.ProxyTorchDispatchMode for x in torch_dispatch_mode_stack) | |
else: | |
return False | |
[docs]class MultiheadAttention(Module): | |
r"""Allows the model to jointly attend to information from different representation subspaces. | |
Method described in the paper: | |
`Attention Is All You Need <https://arxiv.org/abs/1706.03762>`_. | |
Multi-Head Attention is defined as: | |
.. math:: | |
\text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O | |
where :math:`head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)`. | |
``nn.MultiHeadAttention`` will use the optimized implementations of | |
``scaled_dot_product_attention()`` when possible. | |
In addition to support for the new ``scaled_dot_product_attention()`` | |
function, for speeding up Inference, MHA will use | |
fastpath inference with support for Nested Tensors, iff: | |
- self attention is being computed (i.e., ``query``, ``key``, and ``value`` are the same tensor). | |
- inputs are batched (3D) with ``batch_first==True`` | |
- Either autograd is disabled (using ``torch.inference_mode`` or ``torch.no_grad``) or no tensor argument ``requires_grad`` | |
- training is disabled (using ``.eval()``) | |
- ``add_bias_kv`` is ``False`` | |
- ``add_zero_attn`` is ``False`` | |
- ``kdim`` and ``vdim`` are equal to ``embed_dim`` | |
- if a `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_ is passed, neither ``key_padding_mask`` | |
nor ``attn_mask`` is passed | |
- autocast is disabled | |
If the optimized inference fastpath implementation is in use, a | |
`NestedTensor <https://pytorch.org/docs/stable/nested.html>`_ can be passed for | |
``query``/``key``/``value`` to represent padding more efficiently than using a | |
padding mask. In this case, a `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_ | |
will be returned, and an additional speedup proportional to the fraction of the input | |
that is padding can be expected. | |
Args: | |
embed_dim: Total dimension of the model. | |
num_heads: Number of parallel attention heads. Note that ``embed_dim`` will be split | |
across ``num_heads`` (i.e. each head will have dimension ``embed_dim // num_heads``). | |
dropout: Dropout probability on ``attn_output_weights``. Default: ``0.0`` (no dropout). | |
bias: If specified, adds bias to input / output projection layers. Default: ``True``. | |
add_bias_kv: If specified, adds bias to the key and value sequences at dim=0. Default: ``False``. | |
add_zero_attn: If specified, adds a new batch of zeros to the key and value sequences at dim=1. | |
Default: ``False``. | |
kdim: Total number of features for keys. Default: ``None`` (uses ``kdim=embed_dim``). | |
vdim: Total number of features for values. Default: ``None`` (uses ``vdim=embed_dim``). | |
batch_first: If ``True``, then the input and output tensors are provided | |
as (batch, seq, feature). Default: ``False`` (seq, batch, feature). | |
Examples:: | |
>>> # xdoctest: +SKIP | |
>>> multihead_attn = nn.MultiheadAttention(embed_dim, num_heads) | |
>>> attn_output, attn_output_weights = multihead_attn(query, key, value) | |
.. _`FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness`: | |
https://arxiv.org/abs/2205.14135 | |
""" | |
__constants__ = ['batch_first'] | |
bias_k: Optional[torch.Tensor] | |
bias_v: Optional[torch.Tensor] | |
def __init__(self, embed_dim, num_heads, dropout=0., bias=True, add_bias_kv=False, add_zero_attn=False, | |
kdim=None, vdim=None, batch_first=False, device=None, dtype=None) -> None: | |
if embed_dim <= 0 or num_heads <= 0: | |
raise ValueError( | |
f"embed_dim and num_heads must be greater than 0," | |
f" got embed_dim={embed_dim} and num_heads={num_heads} instead" | |
) | |
factory_kwargs = {'device': device, 'dtype': dtype} | |
super().__init__() | |
self.embed_dim = embed_dim | |
self.kdim = kdim if kdim is not None else embed_dim | |
self.vdim = vdim if vdim is not None else embed_dim | |
self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim | |
self.num_heads = num_heads | |
self.dropout = dropout | |
self.batch_first = batch_first | |
self.head_dim = embed_dim // num_heads | |
assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads" | |
if not self._qkv_same_embed_dim: | |
self.q_proj_weight = Parameter(torch.empty((embed_dim, embed_dim), **factory_kwargs)) | |
self.k_proj_weight = Parameter(torch.empty((embed_dim, self.kdim), **factory_kwargs)) | |
self.v_proj_weight = Parameter(torch.empty((embed_dim, self.vdim), **factory_kwargs)) | |
self.register_parameter('in_proj_weight', None) | |
else: | |
self.in_proj_weight = Parameter(torch.empty((3 * embed_dim, embed_dim), **factory_kwargs)) | |
self.register_parameter('q_proj_weight', None) | |
self.register_parameter('k_proj_weight', None) | |
self.register_parameter('v_proj_weight', None) | |
if bias: | |
self.in_proj_bias = Parameter(torch.empty(3 * embed_dim, **factory_kwargs)) | |
else: | |
self.register_parameter('in_proj_bias', None) | |
self.out_proj = NonDynamicallyQuantizableLinear(embed_dim, embed_dim, bias=bias, **factory_kwargs) | |
if add_bias_kv: | |
self.bias_k = Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs)) | |
self.bias_v = Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs)) | |
else: | |
self.bias_k = self.bias_v = None | |
self.add_zero_attn = add_zero_attn | |
self._reset_parameters() | |
def _reset_parameters(self): | |
if self._qkv_same_embed_dim: | |
xavier_uniform_(self.in_proj_weight) | |
else: | |
xavier_uniform_(self.q_proj_weight) | |
xavier_uniform_(self.k_proj_weight) | |
xavier_uniform_(self.v_proj_weight) | |
if self.in_proj_bias is not None: | |
constant_(self.in_proj_bias, 0.) | |
constant_(self.out_proj.bias, 0.) | |
if self.bias_k is not None: | |
xavier_normal_(self.bias_k) | |
if self.bias_v is not None: | |
xavier_normal_(self.bias_v) | |
def __setstate__(self, state): | |
# Support loading old MultiheadAttention checkpoints generated by v1.1.0 | |
if '_qkv_same_embed_dim' not in state: | |
state['_qkv_same_embed_dim'] = True | |
super().__setstate__(state) | |
[docs] def forward( | |
self, | |
query: Tensor, | |
key: Tensor, | |
value: Tensor, | |
key_padding_mask: Optional[Tensor] = None, | |
need_weights: bool = True, | |
attn_mask: Optional[Tensor] = None, | |
average_attn_weights: bool = True, | |
is_causal : bool = False) -> Tuple[Tensor, Optional[Tensor]]: | |
r"""Compute attention outputs using query, key, and value embeddings. | |
Supports optional parameters for padding, masks and attention weights. | |
Args: | |
query: Query embeddings of shape :math:`(L, E_q)` for unbatched input, :math:`(L, N, E_q)` when ``batch_first=False`` | |
or :math:`(N, L, E_q)` when ``batch_first=True``, where :math:`L` is the target sequence length, | |
:math:`N` is the batch size, and :math:`E_q` is the query embedding dimension ``embed_dim``. | |
Queries are compared against key-value pairs to produce the output. | |
See "Attention Is All You Need" for more details. | |
key: Key embeddings of shape :math:`(S, E_k)` for unbatched input, :math:`(S, N, E_k)` when ``batch_first=False`` | |
or :math:`(N, S, E_k)` when ``batch_first=True``, where :math:`S` is the source sequence length, | |
:math:`N` is the batch size, and :math:`E_k` is the key embedding dimension ``kdim``. | |
See "Attention Is All You Need" for more details. | |
value: Value embeddings of shape :math:`(S, E_v)` for unbatched input, :math:`(S, N, E_v)` when | |
``batch_first=False`` or :math:`(N, S, E_v)` when ``batch_first=True``, where :math:`S` is the source | |
sequence length, :math:`N` is the batch size, and :math:`E_v` is the value embedding dimension ``vdim``. | |
See "Attention Is All You Need" for more details. | |
key_padding_mask: If specified, a mask of shape :math:`(N, S)` indicating which elements within ``key`` | |
to ignore for the purpose of attention (i.e. treat as "padding"). For unbatched `query`, shape should be :math:`(S)`. | |
Binary and float masks are supported. | |
For a binary mask, a ``True`` value indicates that the corresponding ``key`` value will be ignored for | |
the purpose of attention. For a float mask, it will be directly added to the corresponding ``key`` value. | |
need_weights: If specified, returns ``attn_output_weights`` in addition to ``attn_outputs``. | |
Set ``need_weights=False`` to use the optimized ``scaled_dot_product_attention`` | |
and achieve the best performance for MHA. | |
Default: ``True``. | |
attn_mask: If specified, a 2D or 3D mask preventing attention to certain positions. Must be of shape | |
:math:`(L, S)` or :math:`(N\cdot\text{num\_heads}, L, S)`, where :math:`N` is the batch size, | |
:math:`L` is the target sequence length, and :math:`S` is the source sequence length. A 2D mask will be | |
broadcasted across the batch while a 3D mask allows for a different mask for each entry in the batch. | |
Binary and float masks are supported. For a binary mask, a ``True`` value indicates that the | |
corresponding position is not allowed to attend. For a float mask, the mask values will be added to | |
the attention weight. | |
If both attn_mask and key_padding_mask are supplied, their types should match. | |
average_attn_weights: If true, indicates that the returned ``attn_weights`` should be averaged across | |
heads. Otherwise, ``attn_weights`` are provided separately per head. Note that this flag only has an | |
effect when ``need_weights=True``. Default: ``True`` (i.e. average weights across heads) | |
is_causal: If specified, applies a causal mask as attention mask. | |
Default: ``False``. | |
Warning: | |
``is_causal`` provides a hint that ``attn_mask`` is the | |
causal mask. Providing incorrect hints can result in | |
incorrect execution, including forward and backward | |
compatibility. | |
Outputs: | |
- **attn_output** - Attention outputs of shape :math:`(L, E)` when input is unbatched, | |
:math:`(L, N, E)` when ``batch_first=False`` or :math:`(N, L, E)` when ``batch_first=True``, | |
where :math:`L` is the target sequence length, :math:`N` is the batch size, and :math:`E` is the | |
embedding dimension ``embed_dim``. | |
- **attn_output_weights** - Only returned when ``need_weights=True``. If ``average_attn_weights=True``, | |
returns attention weights averaged across heads of shape :math:`(L, S)` when input is unbatched or | |
:math:`(N, L, S)`, where :math:`N` is the batch size, :math:`L` is the target sequence length, and | |
:math:`S` is the source sequence length. If ``average_attn_weights=False``, returns attention weights per | |
head of shape :math:`(\text{num\_heads}, L, S)` when input is unbatched or :math:`(N, \text{num\_heads}, L, S)`. | |
.. note:: | |
`batch_first` argument is ignored for unbatched inputs. | |
""" | |
why_not_fast_path = '' | |
if ((attn_mask is not None and torch.is_floating_point(attn_mask)) | |
or (key_padding_mask is not None) and torch.is_floating_point(key_padding_mask)): | |
why_not_fast_path = "floating-point masks are not supported for fast path." | |
is_batched = query.dim() == 3 | |
key_padding_mask = F._canonical_mask( | |
mask=key_padding_mask, | |
mask_name="key_padding_mask", | |
other_type=F._none_or_dtype(attn_mask), | |
other_name="attn_mask", | |
target_type=query.dtype | |
) | |
attn_mask = F._canonical_mask( | |
mask=attn_mask, | |
mask_name="attn_mask", | |
other_type=None, | |
other_name="", | |
target_type=query.dtype, | |
check_other=False, | |
) | |
is_fastpath_enabled = torch.backends.mha.get_fastpath_enabled() | |
if not is_fastpath_enabled: | |
why_not_fast_path = "torch.backends.mha.get_fastpath_enabled() was not True" | |
elif not is_batched: | |
why_not_fast_path = f"input not batched; expected query.dim() of 3 but got {query.dim()}" | |
elif query is not key or key is not value: | |
# When lifting this restriction, don't forget to either | |
# enforce that the dtypes all match or test cases where | |
# they don't! | |
why_not_fast_path = "non-self attention was used (query, key, and value are not the same Tensor)" | |
elif self.in_proj_bias is not None and query.dtype != self.in_proj_bias.dtype: | |
why_not_fast_path = f"dtypes of query ({query.dtype}) and self.in_proj_bias ({self.in_proj_bias.dtype}) don't match" | |
elif self.in_proj_weight is None: | |
why_not_fast_path = "in_proj_weight was None" | |
elif query.dtype != self.in_proj_weight.dtype: | |
# this case will fail anyway, but at least they'll get a useful error message. | |
why_not_fast_path = f"dtypes of query ({query.dtype}) and self.in_proj_weight ({self.in_proj_weight.dtype}) don't match" | |
elif self.training: | |
why_not_fast_path = "training is enabled" | |
elif (self.num_heads % 2) != 0: | |
why_not_fast_path = "self.num_heads is not even" | |
elif not self.batch_first: | |
why_not_fast_path = "batch_first was not True" | |
elif self.bias_k is not None: | |
why_not_fast_path = "self.bias_k was not None" | |
elif self.bias_v is not None: | |
why_not_fast_path = "self.bias_v was not None" | |
elif self.add_zero_attn: | |
why_not_fast_path = "add_zero_attn was enabled" | |
elif not self._qkv_same_embed_dim: | |
why_not_fast_path = "_qkv_same_embed_dim was not True" | |
elif query.is_nested and (key_padding_mask is not None or attn_mask is not None): | |
why_not_fast_path = "supplying both src_key_padding_mask and src_mask at the same time \ | |
is not supported with NestedTensor input" | |
elif torch.is_autocast_enabled(): | |
why_not_fast_path = "autocast is enabled" | |
if not why_not_fast_path: | |
tensor_args = ( | |
query, | |
key, | |
value, | |
self.in_proj_weight, | |
self.in_proj_bias, | |
self.out_proj.weight, | |
self.out_proj.bias, | |
) | |
# We have to use list comprehensions below because TorchScript does not support | |
# generator expressions. | |
if torch.overrides.has_torch_function(tensor_args): | |
why_not_fast_path = "some Tensor argument has_torch_function" | |
elif _is_make_fx_tracing(): | |
why_not_fast_path = "we are running make_fx tracing" | |
elif not all(_check_arg_device(x) for x in tensor_args): | |
why_not_fast_path = ("some Tensor argument's device is neither one of " | |
f"cpu, cuda or {torch.utils.backend_registration._privateuse1_backend_name}") | |
elif torch.is_grad_enabled() and any(_arg_requires_grad(x) for x in tensor_args): | |
why_not_fast_path = ("grad is enabled and at least one of query or the " | |
"input/output projection weights or biases requires_grad") | |
if not why_not_fast_path: | |
merged_mask, mask_type = self.merge_masks(attn_mask, key_padding_mask, query) | |
if self.in_proj_bias is not None and self.in_proj_weight is not None: | |
return torch._native_multi_head_attention( | |
query, | |
key, | |
value, | |
self.embed_dim, | |
self.num_heads, | |
self.in_proj_weight, | |
self.in_proj_bias, | |
self.out_proj.weight, | |
self.out_proj.bias, | |
merged_mask, | |
need_weights, | |
average_attn_weights, | |
mask_type) | |
any_nested = query.is_nested or key.is_nested or value.is_nested | |
assert not any_nested, ("MultiheadAttention does not support NestedTensor outside of its fast path. " + | |
f"The fast path was not hit because {why_not_fast_path}") | |
if self.batch_first and is_batched: | |
# make sure that the transpose op does not affect the "is" property | |
if key is value: | |
if query is key: | |
query = key = value = query.transpose(1, 0) | |
else: | |
query, key = (x.transpose(1, 0) for x in (query, key)) | |
value = key | |
else: | |
query, key, value = (x.transpose(1, 0) for x in (query, key, value)) | |
if not self._qkv_same_embed_dim: | |
attn_output, attn_output_weights = F.multi_head_attention_forward( | |
query, key, value, self.embed_dim, self.num_heads, | |
self.in_proj_weight, self.in_proj_bias, | |
self.bias_k, self.bias_v, self.add_zero_attn, | |
self.dropout, self.out_proj.weight, self.out_proj.bias, | |
training=self.training, | |
key_padding_mask=key_padding_mask, need_weights=need_weights, | |
attn_mask=attn_mask, | |
use_separate_proj_weight=True, | |
q_proj_weight=self.q_proj_weight, k_proj_weight=self.k_proj_weight, | |
v_proj_weight=self.v_proj_weight, | |
average_attn_weights=average_attn_weights, | |
is_causal=is_causal) | |
else: | |
attn_output, attn_output_weights = F.multi_head_attention_forward( | |
query, key, value, self.embed_dim, self.num_heads, | |
self.in_proj_weight, self.in_proj_bias, | |
self.bias_k, self.bias_v, self.add_zero_attn, | |
self.dropout, self.out_proj.weight, self.out_proj.bias, | |
training=self.training, | |
key_padding_mask=key_padding_mask, | |
need_weights=need_weights, | |
attn_mask=attn_mask, | |
average_attn_weights=average_attn_weights, | |
is_causal=is_causal) | |
if self.batch_first and is_batched: | |
return attn_output.transpose(1, 0), attn_output_weights | |
else: | |
return attn_output, attn_output_weights | |
[docs] def merge_masks(self, attn_mask: Optional[Tensor], key_padding_mask: Optional[Tensor], | |
query: Tensor) -> Tuple[Optional[Tensor], Optional[int]]: | |
r"""Determine mask type and combine masks if necessary. | |
If only one mask is provided, that mask | |
and the corresponding mask type will be returned. If both masks are provided, they will be both | |
expanded to shape ``(batch_size, num_heads, seq_len, seq_len)``, combined with logical ``or`` | |
and mask type 2 will be returned | |
Args: | |
attn_mask: attention mask of shape ``(seq_len, seq_len)``, mask type 0 | |
key_padding_mask: padding mask of shape ``(batch_size, seq_len)``, mask type 1 | |
query: query embeddings of shape ``(batch_size, seq_len, embed_dim)`` | |
Returns: | |
merged_mask: merged mask | |
mask_type: merged mask type (0, 1, or 2) | |
""" | |
mask_type: Optional[int] = None | |
merged_mask: Optional[Tensor] = None | |
if key_padding_mask is not None: | |
mask_type = 1 | |
merged_mask = key_padding_mask | |
if attn_mask is not None: | |
# In this branch query can't be a nested tensor, so it has a shape | |
batch_size, seq_len, _ = query.shape | |
mask_type = 2 | |
# Always expands attn_mask to 4D | |
if attn_mask.dim() == 3: | |
attn_mask_expanded = attn_mask.view(batch_size, -1, seq_len, seq_len) | |
else: # attn_mask.dim() == 2: | |
attn_mask_expanded = attn_mask.view(1, 1, seq_len, seq_len).expand(batch_size, self.num_heads, -1, -1) | |
merged_mask = attn_mask_expanded | |
if key_padding_mask is not None: | |
key_padding_mask_expanded = key_padding_mask.view(batch_size, 1, 1, seq_len).expand(-1, self.num_heads, -1, -1) | |
merged_mask = attn_mask_expanded + key_padding_mask_expanded | |
# no attn_mask and no key_padding_mask, returns None, None | |
return merged_mask, mask_type | |
[docs]class PReLU(Module): | |
r"""Applies the element-wise PReLU function. | |
.. math:: | |
\text{PReLU}(x) = \max(0,x) + a * \min(0,x) | |
or | |
.. math:: | |
\text{PReLU}(x) = | |
\begin{cases} | |
x, & \text{ if } x \ge 0 \\ | |
ax, & \text{ otherwise } | |
\end{cases} | |
Here :math:`a` is a learnable parameter. When called without arguments, `nn.PReLU()` uses a single | |
parameter :math:`a` across all input channels. If called with `nn.PReLU(nChannels)`, | |
a separate :math:`a` is used for each input channel. | |
.. note:: | |
weight decay should not be used when learning :math:`a` for good performance. | |
.. note:: | |
Channel dim is the 2nd dim of input. When input has dims < 2, then there is | |
no channel dim and the number of channels = 1. | |
Args: | |
num_parameters (int): number of :math:`a` to learn. | |
Although it takes an int as input, there is only two values are legitimate: | |
1, or the number of channels at input. Default: 1 | |
init (float): the initial value of :math:`a`. Default: 0.25 | |
Shape: | |
- Input: :math:`( *)` where `*` means, any number of additional | |
dimensions. | |
- Output: :math:`(*)`, same shape as the input. | |
Attributes: | |
weight (Tensor): the learnable weights of shape (:attr:`num_parameters`). | |
.. image:: ../scripts/activation_images/PReLU.png | |
Examples:: | |
>>> m = nn.PReLU() | |
>>> input = torch.randn(2) | |
>>> output = m(input) | |
""" | |
__constants__ = ['num_parameters'] | |
num_parameters: int | |
def __init__(self, num_parameters: int = 1, init: float = 0.25, | |
device=None, dtype=None) -> None: | |
factory_kwargs = {'device': device, 'dtype': dtype} | |
self.num_parameters = num_parameters | |
super().__init__() | |
self.init = init | |
self.weight = Parameter(torch.empty(num_parameters, **factory_kwargs)) | |
self.reset_parameters() | |
def reset_parameters(self): | |
torch.nn.init.constant_(self.weight, self.init) | |
def forward(self, input: Tensor) -> Tensor: | |
return F.prelu(input, self.weight) | |
def extra_repr(self) -> str: | |
return f'num_parameters={self.num_parameters}' | |
[docs]class Softsign(Module): | |
r"""Applies the element-wise Softsign function. | |
.. math:: | |
\text{SoftSign}(x) = \frac{x}{ 1 + |x|} | |
Shape: | |
- Input: :math:`(*)`, where :math:`*` means any number of dimensions. | |
- Output: :math:`(*)`, same shape as the input. | |
.. image:: ../scripts/activation_images/Softsign.png | |
Examples:: | |
>>> m = nn.Softsign() | |
>>> input = torch.randn(2) | |
>>> output = m(input) | |
""" | |
def forward(self, input: Tensor) -> Tensor: | |
return F.softsign(input) | |
[docs]class Tanhshrink(Module): | |
r"""Applies the element-wise Tanhshrink function. | |
.. math:: | |
\text{Tanhshrink}(x) = x - \tanh(x) | |
Shape: | |
- Input: :math:`(*)`, where :math:`*` means any number of dimensions. | |
- Output: :math:`(*)`, same shape as the input. | |
.. image:: ../scripts/activation_images/Tanhshrink.png | |
Examples:: | |
>>> m = nn.Tanhshrink() | |
>>> input = torch.randn(2) | |
>>> output = m(input) | |
""" | |
def forward(self, input: Tensor) -> Tensor: | |
return F.tanhshrink(input) | |
[docs]class Softmin(Module): | |
r"""Applies the Softmin function to an n-dimensional input Tensor. | |
Rescales them so that the elements of the n-dimensional output Tensor | |
lie in the range `[0, 1]` and sum to 1. | |
Softmin is defined as: | |
.. math:: | |
\text{Softmin}(x_{i}) = \frac{\exp(-x_i)}{\sum_j \exp(-x_j)} | |
Shape: | |
- Input: :math:`(*)` where `*` means, any number of additional | |
dimensions | |
- Output: :math:`(*)`, same shape as the input | |
Args: | |
dim (int): A dimension along which Softmin will be computed (so every slice | |
along dim will sum to 1). | |
Returns: | |
a Tensor of the same dimension and shape as the input, with | |
values in the range [0, 1] | |
Examples:: | |
>>> m = nn.Softmin(dim=1) | |
>>> input = torch.randn(2, 3) | |
>>> output = m(input) | |
""" | |
__constants__ = ['dim'] | |
dim: Optional[int] | |
def __init__(self, dim: Optional[int] = None) -> None: | |
super().__init__() | |
self.dim = dim | |
def __setstate__(self, state): | |
super().__setstate__(state) | |
if not hasattr(self, 'dim'): | |
self.dim = None | |
def forward(self, input: Tensor) -> Tensor: | |
return F.softmin(input, self.dim, _stacklevel=5) | |
def extra_repr(self): | |
return f'dim={self.dim}' | |
[docs]class Softmax(Module): | |
r"""Applies the Softmax function to an n-dimensional input Tensor. | |
Rescales them so that the elements of the n-dimensional output Tensor | |
lie in the range [0,1] and sum to 1. | |
Softmax is defined as: | |
.. math:: | |
\text{Softmax}(x_{i}) = \frac{\exp(x_i)}{\sum_j \exp(x_j)} | |
When the input Tensor is a sparse tensor then the unspecified | |
values are treated as ``-inf``. | |
Shape: | |
- Input: :math:`(*)` where `*` means, any number of additional | |
dimensions | |
- Output: :math:`(*)`, same shape as the input | |
Returns: | |
a Tensor of the same dimension and shape as the input with | |
values in the range [0, 1] | |
Args: | |
dim (int): A dimension along which Softmax will be computed (so every slice | |
along dim will sum to 1). | |
.. note:: | |
This module doesn't work directly with NLLLoss, | |
which expects the Log to be computed between the Softmax and itself. | |
Use `LogSoftmax` instead (it's faster and has better numerical properties). | |
Examples:: | |
>>> m = nn.Softmax(dim=1) | |
>>> input = torch.randn(2, 3) | |
>>> output = m(input) | |
""" | |
__constants__ = ['dim'] | |
dim: Optional[int] | |
def __init__(self, dim: Optional[int] = None) -> None: | |
super().__init__() | |
self.dim = dim | |
def __setstate__(self, state): | |
super().__setstate__(state) | |
if not hasattr(self, 'dim'): | |
self.dim = None | |
def forward(self, input: Tensor) -> Tensor: | |
return F.softmax(input, self.dim, _stacklevel=5) | |
def extra_repr(self) -> str: | |
return f'dim={self.dim}' | |
[docs]class Softmax2d(Module): | |
r"""Applies SoftMax over features to each spatial location. | |
When given an image of ``Channels x Height x Width``, it will | |
apply `Softmax` to each location :math:`(Channels, h_i, w_j)` | |
Shape: | |
- Input: :math:`(N, C, H, W)` or :math:`(C, H, W)`. | |
- Output: :math:`(N, C, H, W)` or :math:`(C, H, W)` (same shape as input) | |
Returns: | |
a Tensor of the same dimension and shape as the input with | |
values in the range [0, 1] | |
Examples:: | |
>>> m = nn.Softmax2d() | |
>>> # you softmax over the 2nd dimension | |
>>> input = torch.randn(2, 3, 12, 13) | |
>>> output = m(input) | |
""" | |
def forward(self, input: Tensor) -> Tensor: | |
if input.dim() not in (3, 4): | |
raise ValueError( | |
f"Softmax2d: expected input to be 3D or 4D, got {input.dim()}D instead" | |
) | |
return F.softmax(input, -3, _stacklevel=5) | |
[docs]class LogSoftmax(Module): | |
r"""Applies the :math:`\log(\text{Softmax}(x))` function to an n-dimensional input Tensor. | |
The LogSoftmax formulation can be simplified as: | |
.. math:: | |
\text{LogSoftmax}(x_{i}) = \log\left(\frac{\exp(x_i) }{ \sum_j \exp(x_j)} \right) | |
Shape: | |
- Input: :math:`(*)` where `*` means, any number of additional | |
dimensions | |
- Output: :math:`(*)`, same shape as the input | |
Args: | |
dim (int): A dimension along which LogSoftmax will be computed. | |
Returns: | |
a Tensor of the same dimension and shape as the input with | |
values in the range [-inf, 0) | |
Examples:: | |
>>> m = nn.LogSoftmax(dim=1) | |
>>> input = torch.randn(2, 3) | |
>>> output = m(input) | |
""" | |
__constants__ = ['dim'] | |
dim: Optional[int] | |
def __init__(self, dim: Optional[int] = None) -> None: | |
super().__init__() | |
self.dim = dim | |
def __setstate__(self, state): | |
super().__setstate__(state) | |
if not hasattr(self, 'dim'): | |
self.dim = None | |
def forward(self, input: Tensor) -> Tensor: | |
return F.log_softmax(input, self.dim, _stacklevel=5) | |
def extra_repr(self): | |
return f'dim={self.dim}' |