import gradio as gr import torch from transformers import AutoTokenizer, AutoModelForCausalLM title = """# 🙋🏻‍♂️ Welcome to Tonic's Minitron-8B-Base""" # Load the tokenizer and model model_path = "nvidia/Minitron-8B-Base" tokenizer = AutoTokenizer.from_pretrained(model_path) device='cuda' dtype=torch.bfloat16 model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=dtype, device_map=device) # Define the prompt format def create_prompt(instruction): PROMPT = '''You are TronTonic an AI created by Tonic-AI. Below is an instruction that describes a task.\n\nWrite a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response:''' return PROMPT.format(instruction=instruction) def respond(message, history, system_message, max_tokens, temperature, top_p): prompt = create_prompt(message) input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.device) output_ids = model.generate(input_ids, max_length=50, num_return_sequences=1) output_text = tokenizer.decode(output_ids[0], skip_special_tokens=True) return output_text demo = gr.ChatInterface( title=gr.Markdown(title), # gr.markdown(description), fn=respond, additional_inputs=[ gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)") ], ) if __name__ == "__main__": demo.launch()