import gradio as gr import torch from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline import json from globe import title, description, customtool model_path = "nvidia/Nemotron-Mini-4B-Instruct" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained(model_path) # Create a pipeline pipe = pipeline("text-generation", model=model_path) pipe.tokenizer = tokenizer # Assign tokenizer manually def create_prompt(system_message, user_message, tool_definition=""): if tool_definition: return f"""System {system_message} {tool_definition} The current date is 2023-06-01. User {user_message} Assistant """ else: return f"System\n{system_message}\n\nUser\n{user_message}\nAssistant\n" def generate_response(message, history, system_message, max_tokens, temperature, top_p, use_pipeline=False, tool_definition=""): full_prompt = create_prompt(system_message, message, tool_definition) if use_pipeline: messages = [ {"role": "system", "content": system_message}, {"role": "user", "content": message}, ] response = pipe(messages, max_new_tokens=max_tokens, temperature=temperature, top_p=top_p)[0]['generated_text'] else: tokenized_chat = tokenizer.apply_chat_template( [ {"role": "system", "content": system_message}, {"role": "user", "content": message}, ], tokenize=True, add_generation_prompt=True, return_tensors="pt" ) with torch.no_grad(): output_ids = model.generate( tokenized_chat, max_new_tokens=max_tokens, temperature=temperature, top_p=top_p, do_sample=True ) response = tokenizer.decode(output_ids[0], skip_special_tokens=True) assistant_response = response.split("Assistant\n")[-1].strip() if tool_definition and "" in assistant_response: tool_call = assistant_response.split("")[1].split("")[0] assistant_response += f"\n\nTool Call: {tool_call}\n\nNote: This is a simulated tool call. In a real scenario, the tool would be executed and its output would be used to generate a final response." return assistant_response with gr.Blocks() as demo: gr.Markdown("# 🤖 Nemotron-Mini-4B-Instruct Demo with Custom Function Calling") gr.Markdown("This demo showcases the Nemotron-Mini-4B-Instruct model from NVIDIA, including optional custom function calling.") with gr.Row(): with gr.Column(scale=3): chatbot = gr.Chatbot(height=400) msg = gr.Textbox(label="User Input", placeholder="Ask a question or request a task...") clear = gr.Button("Clear") with gr.Column(scale=2): system_message = gr.Textbox( label="System Message", value="You are a helpful AI assistant.", lines=2, placeholder="Set the AI's behavior and context..." ) max_tokens = gr.Slider(minimum=1, maximum=1024, value=256, step=1, label="Max Tokens") temperature = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature") top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p") use_pipeline = gr.Checkbox(label="Use Pipeline", value=False) use_tool = gr.Checkbox(label="Use Function Calling", value=False) with gr.Column(visible=False) as tool_options: tool_definition = gr.Code( label="Tool Definition (JSON)", value=customtool, lines=15, language="json" # placeholder="Enter the JSON definition of your custom tool..." ) def user(user_message, history): return "", history + [[user_message, None]] def bot(history, system_message, max_tokens, temperature, top_p, use_pipeline, tool_definition): user_message = history[-1][0] bot_message = generate_response(user_message, history, system_message, max_tokens, temperature, top_p, use_pipeline, tool_definition) history[-1][1] = bot_message return history msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then( bot, [chatbot, system_message, max_tokens, temperature, top_p, use_pipeline, tool_definition], chatbot ) clear.click(lambda: None, None, chatbot, queue=False) use_tool.change( fn=lambda x: gr.update(visible=x), inputs=[use_tool], outputs=[tool_options] ) if __name__ == "__main__": demo.launch()