Spaces:
Runtime error
Runtime error
File size: 3,090 Bytes
9c0da9e d74ddfc 6d607e0 b3758b8 163f1eb cefb8d8 3400476 b07d07c d74ddfc 6d607e0 e71614a 9c0da9e b07d07c e71614a d74ddfc 44fed0e d74ddfc 3400476 27731ec cefb8d8 3400476 cefb8d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
import spaces
import gradio as gr
from transformers import pipeline
import os
import torch
# Set max_split_size_mb
# os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:50'
title = """# 🙋🏻♂️Welcome to🌟Tonic's Nexus🐦⬛Raven"""
description = """You can build with this endpoint using Nexus Raven. The demo is still a work in progress but we hope to add some endpoints for commonly used functions such as intention mappers and audiobook processing.
You can also use Nexus🐦⬛Raven on your laptop & by cloning this space. 🧬🔬🔍 Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/Tonic1/NexusRaven2?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3>
Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community on 👻Discord: [Discord](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Polytonic](https://github.com/tonic-ai) & contribute to 🌟 [PolyGPT](https://github.com/tonic-ai/polygpt-alpha)
"""
raven_pipeline = pipeline(
"text-generation",
model="Nexusflow/NexusRaven-V2-13B",
torch_dtype="auto",
device_map="auto",
)
@spaces.GPU
def process_text(input_text: str) -> str:
prompt = f"User Query: {input_text}<human_end>"
result = raven_pipeline(prompt, max_new_tokens=2048, return_full_text=False, do_sample=False, temperature=0.001)[0]["generated_text"]
torch.cuda.empty_cache()
return result
def create_interface():
with gr.Blocks() as app:
gr.Markdown(title)
gr.Markdown(description)
with gr.Row():
input_text = gr.Textbox(label="Input Text")
submit_button = gr.Button("Submit")
output_text = gr.Textbox(label="Nexus🐦⬛Raven")
submit_button.click(converter.process_text, inputs=input_text, outputs=output_text)
return app
def main():
with gr.Blocks() as demo:
gr.Markdown(title)
gr.Markdown(description)
with gr.Row():
input_text = gr.Textbox(label="Input Text", placeholder="Enter your text here...")
submit_button = gr.Button("Submit")
output_text = gr.Textbox(label="Nexus🐦⬛Raven", placeholder="Generated text will appear here...")
submit_button.click(process_text, inputs=input_text, outputs=output_text)
demo.launch()
if __name__ == "__main__":
main() |