File size: 1,677 Bytes
d3bf12d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d08a3e9
d3bf12d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import gradio as gr
from transformers import AutoTokenizer
from gemma.modeling_gemma import GemmaForCausalLM
import torch
import time

# Assuming the GemmaForCausalLM and the specific tokenizer are correctly installed and imported

def inference(input_text):
    start_time = time.time()
    input_ids = tokenizer(input_text, return_tensors="pt").to(model.device)
    input_length = input_ids["input_ids"].shape[1]
    outputs = model.generate(
        input_ids=input_ids["input_ids"], 
        max_length=1024,
        do_sample=False)
    generated_sequence = outputs[:, input_length:].tolist()
    res = tokenizer.decode(generated_sequence[0])
    end_time = time.time()
    return {"output": res, "latency": f"{end_time - start_time:.2f} seconds"}

# Initialize the tokenizer and model
model_id = "NexaAIDev/Octopus-v2"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = GemmaForCausalLM.from_pretrained(
    model_id, torch_dtype=torch.bfloat16, device_map="auto"
)

def gradio_interface(input_text):
    nexa_query = f"Below is the query from the users, please call the correct function and generate the parameters to call the function.\n\nQuery: {input_text} \n\nResponse:"
    result = inference(nexa_query)
    return result["output"], result["latency"]

iface = gr.Interface(
    fn=gradio_interface,
    inputs=gr.inputs.Textbox(lines=2, placeholder="Enter your query here..."),
    outputs=[gr.outputs.Textbox(label="Output"), gr.outputs.Textbox(label="Latency")],
    title="Gemma Model Inference",
    description="This application uses the Gemma model for generating responses based on the input query."
)

if __name__ == "__main__":
    iface.launch()