File size: 7,044 Bytes
337337b
 
 
 
 
 
 
 
 
 
 
9a64677
 
 
 
 
 
337337b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import torch
import torch.nn as nn
import torch.nn.functional as F
from safetensors import safe_open
import json
import gradio as gr
from PIL import Image
import numpy as np
from mistral_common.protocol.instruct.messages import UserMessage, TextChunk, ImageChunk
from mistral_common.protocol.instruct.request import ChatCompletionRequest
from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
from huggingface_hub import snapshot_download
import Spaces


# Download model files
model_path = snapshot_download(repo_id="mistral-community/pixtral-12b-240910")

with open('PARAMS.json', 'r') as f:
    params = json.load(f)

with open('TEKKEN.json', 'r') as f:
    tokenizer_config = json.load(f)

class GELU(nn.Module):
    def __init__(self, dim_in, dim_out, approximate='none', bias=True):
        super().__init__()
        self.linear = nn.Linear(dim_in, dim_out, bias=bias)
        self.approximate = approximate

    def forward(self, x):
        if self.approximate == 'tanh':
            return 0.5 * x * (1 + torch.tanh(np.sqrt(2 / np.pi) * (x + 0.044715 * torch.pow(x, 3))))
        else:
            return F.gelu(self.linear(x))

class Rope2D(nn.Module):
    def __init__(self, dim, max_position_embeddings=1024, base=10000):
        super().__init__()
        inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
        self.register_buffer("inv_freq", inv_freq)
        self.max_seq_len_cached = max_position_embeddings
        t = torch.arange(self.max_seq_len_cached, dtype=self.inv_freq.dtype)
        freqs = torch.einsum("i,j->ij", t, self.inv_freq)
        emb = torch.cat((freqs, freqs), dim=-1)
        self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
        self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)

    def forward(self, x, seq_len=None):
        if seq_len > self.max_seq_len_cached:
            self.max_seq_len_cached = seq_len
            t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype)
            freqs = torch.einsum("i,j->ij", t, self.inv_freq)
            emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
            self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
            self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
        return (
            self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
            self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
        )

class VisionEncoder(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.embed = nn.Conv2d(config['num_channels'], config['hidden_size'], kernel_size=config['patch_size'], stride=config['patch_size'])
        self.rope = Rope2D(config['hidden_size'] // config['num_attention_heads'], base=config['rope_theta'])
        self.layers = nn.ModuleList([nn.TransformerEncoderLayer(d_model=config['hidden_size'], nhead=config['num_attention_heads'], dim_feedforward=config['intermediate_size']) for _ in range(config['num_hidden_layers'])])
        self.norm = nn.LayerNorm(config['hidden_size'])
        self.gelu = GELU(config['hidden_size'], config['hidden_size'])

    def forward(self, pixel_values):
        x = self.embed(pixel_values)
        b, c, h, w = x.shape
        x = x.flatten(2).transpose(1, 2)
        cos, sin = self.rope(x, seq_len=h*w)
        for layer in self.layers:
            x = layer(x)
        x = self.norm(x)
        x = self.gelu(x)
        return x

class PixtralModel(nn.Module):
    def __init__(self, params):
        super().__init__()
        self.vision_encoder = VisionEncoder(params['vision_encoder'])
        # Add text generation components here

    def forward(self, image):
        vision_output = self.vision_encoder(image)
        # Add text generation logic here
        return vision_output

# Initialize the model
model = PixtralModel(params)

# Load the model weights
with safe_open('consolidated.safetensors', framework="pt", device="cpu") as f:
    for name, param in model.named_parameters():
        if name in f.keys():
            param.data = f.get_tensor(name)

model.eval()

# Initialize the tokenizer
tokenizer = MistralTokenizer.from_model("pixtral")

def process_image_and_text(image, prompt):
    # Prepare the image
    image = image.convert('RGB')
    image = image.resize((params['vision_encoder']['image_size'], params['vision_encoder']['image_size']))
    image_tensor = torch.tensor(np.array(image)).permute(2, 0, 1).unsqueeze(0).float() / 255.0

    # Tokenize the input
    tokenized = tokenizer.encode_chat_completion(
        ChatCompletionRequest(
            messages=[
                UserMessage(
                    content=[
                        TextChunk(text=prompt),
                        ImageChunk(image=image),
                    ]
                )
            ],
            model="pixtral",
        )
    )
    tokens, text, images = tokenized.tokens, tokenized.text, tokenized.images

    # Process the image and generate text
    with torch.no_grad():
        vision_output = model(image_tensor)
        # Add text generation logic here
        generated_text = f"Generated text based on the image and prompt: {prompt}"

    return generated_text, len(tokens), len(images)

# Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# Pixtral Image-to-Text Model Demo")
    gr.Markdown("Upload an image and provide a prompt to generate text based on it.")
    
    with gr.Row():
        with gr.Column(scale=1):
            input_image = gr.Image(type="pil")
            input_prompt = gr.Textbox(label="Prompt")
            submit_btn = gr.Button("Generate Text")
        
        with gr.Column(scale=1):
            output_text = gr.Textbox(label="Generated Text")
            token_count = gr.Number(label="Number of Tokens")
            image_count = gr.Number(label="Number of Images")
    
    submit_btn.click(
        fn=process_image_and_text,
        inputs=[input_image, input_prompt],
        outputs=[output_text, token_count, image_count]
    )
    
    gr.Markdown("## How it works")
    gr.Markdown("1. The image is processed by a Vision Encoder using 2D ROPE (Rotary Position Embedding).")
    gr.Markdown("2. The encoder uses GELU activation in its layers.")
    gr.Markdown("3. The encoded image and the prompt are used to generate descriptive text.")
    
    gr.Markdown("## Model Details")
    gr.Markdown(f"- Vision Encoder Hidden Size: {params['vision_encoder']['hidden_size']}")
    gr.Markdown(f"- Number of Vision Encoder Layers: {params['vision_encoder']['num_hidden_layers']}")
    gr.Markdown(f"- Number of Attention Heads: {params['vision_encoder']['num_attention_heads']}")
    gr.Markdown(f"- Image Size: {params['vision_encoder']['image_size']}x{params['vision_encoder']['image_size']}")
    gr.Markdown(f"- Patch Size: {params['vision_encoder']['patch_size']}x{params['vision_encoder']['patch_size']}")

demo.launch()