Spaces:
Paused
Paused
File size: 8,003 Bytes
337337b f570b2f 337337b f570b2f 9a64677 e9ec3b8 9a64677 337337b f570b2f 337337b f570b2f 337337b f570b2f e562e7a f570b2f e562e7a 337337b e562e7a f570b2f 337337b f570b2f 337337b f570b2f 337337b e9ec3b8 337337b e9ec3b8 337337b e9ec3b8 337337b f570b2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from safetensors import safe_open
import json
import gradio as gr
from PIL import Image
import numpy as np
from huggingface_hub import snapshot_download
from mistral_common.protocol.instruct.messages import UserMessage, TextChunk, ImageChunk
from mistral_common.protocol.instruct.request import ChatCompletionRequest
from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
import spaces
title = "# **WIP / DEMO** 🙋🏻♂️Welcome to Tonic's Pixtral Image-to-Text Model Demo"
description = """Upload an image to encode it. This is a **work in progress** , just showing off some demo features here until it's ready.
### Join us :
🌟TeamTonic🌟 is always making cool demos! Join our active builder's 🛠️community 👻 [](https://discord.gg/qdfnvSPcqP) On 🤗Huggingface:[MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to🌟 [Build Tonic](https://git.tonic-ai.com/contribute)🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗
"""
# Download model files
model_path = snapshot_download(repo_id="mistral-community/pixtral-12b-240910")
# Load model parameters and tokenizer configuration
with open(f'{model_path}/params.json', 'r') as f:
params = json.load(f)
with open(f'{model_path}/tekken.json', 'r') as f:
tokenizer_config = json.load(f)
class GELU(nn.Module):
def __init__(self, dim_in, dim_out, approximate='none', bias=True):
super().__init__()
self.linear = nn.Linear(dim_in, dim_out, bias=bias)
self.approximate = approximate
def forward(self, x):
if self.approximate == 'tanh':
return 0.5 * x * (1 + torch.tanh(np.sqrt(2 / np.pi) * (x + 0.044715 * torch.pow(x, 3))))
else:
return F.gelu(self.linear(x))
class Rope2D(nn.Module):
def __init__(self, dim, max_position_embeddings=1024, base=10000):
super().__init__()
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
self.register_buffer("inv_freq", inv_freq)
self.max_seq_len_cached = max_position_embeddings
t = torch.arange(self.max_seq_len_cached, dtype=self.inv_freq.dtype)
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
def forward(self, x, seq_len=None):
if seq_len > self.max_seq_len_cached:
self.max_seq_len_cached = seq_len
t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype)
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
return (
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
)
class VisionEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.embed = nn.Conv2d(config['num_channels'], config['hidden_size'], kernel_size=config['patch_size'], stride=config['patch_size'])
self.rope = Rope2D(config['hidden_size'] // config['num_attention_heads'], base=config['rope_theta'])
self.layers = nn.ModuleList([nn.TransformerEncoderLayer(d_model=config['hidden_size'], nhead=config['num_attention_heads'], dim_feedforward=config['intermediate_size']) for _ in range(config['num_hidden_layers'])])
self.norm = nn.LayerNorm(config['hidden_size'])
self.gelu = GELU(config['hidden_size'], config['hidden_size'])
def forward(self, pixel_values):
x = self.embed(pixel_values)
b, c, h, w = x.shape
x = x.flatten(2).transpose(1, 2)
cos, sin = self.rope(x, seq_len=h*w)
for layer in self.layers:
x = layer(x)
x = self.norm(x)
x = self.gelu(x)
return x
class PixtralModel(nn.Module):
def __init__(self, params):
super().__init__()
self.vision_encoder = VisionEncoder(params['vision_encoder'])
# Add text generation components here
def forward(self, image):
vision_output = self.vision_encoder(image)
# Add text generation logic here
return vision_output
def load_model(params, model_path):
model = PixtralModel(params)
with safe_open(f'{model_path}/consolidated.safetensors', framework="pt", device="cpu") as f:
for name, param in model.named_parameters():
if name in f.keys():
param.data = f.get_tensor(name)
model.eval()
return model
# Initialize the model
model = load_model(params, model_path)
tokenizer = MistralTokenizer.from_model("pixtral")
@spaces.GPU
def process_image_and_text(image, prompt):
# Prepare the image
image = image.convert('RGB')
image = image.resize((params['vision_encoder']['image_size'], params['vision_encoder']['image_size']))
image_tensor = torch.tensor(np.array(image)).permute(2, 0, 1).unsqueeze(0).float() / 255.0
image_tensor = image_tensor.cuda()
# Tokenize the input
tokenized = tokenizer.encode_chat_completion(
ChatCompletionRequest(
messages=[
UserMessage(
content=[
TextChunk(text=prompt),
ImageChunk(image=image),
]
)
],
model="pixtral",
)
)
tokens, text, images = tokenized.tokens, tokenized.text, tokenized.images
# Process the image and generate text
with torch.no_grad():
model.cuda()
vision_output = model(image_tensor)
model.cpu()
generated_text = f"Generated text based on the image and prompt: {prompt}"
return generated_text, len(tokens), len(images)
# Gradio interface
with gr.Blocks() as demo:
gr.Markdown(title)
gr.Markdown(description)
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(type="pil")
input_prompt = gr.Textbox(label="Prompt")
submit_btn = gr.Button("Generate Text")
with gr.Column(scale=1):
output_text = gr.Textbox(label="Generated Text")
token_count = gr.Number(label="Number of Tokens")
image_count = gr.Number(label="Number of Images")
submit_btn.click(
fn=process_image_and_text,
inputs=[input_image, input_prompt],
outputs=[output_text, token_count, image_count]
)
gr.Markdown("## How it works")
gr.Markdown("1. The image is processed by a Vision Encoder using 2D ROPE (Rotary Position Embedding).")
gr.Markdown("2. The encoder uses GELU activation in its layers.")
gr.Markdown("3. The encoded image and the prompt are used to generate descriptive text.")
gr.Markdown("## Model Details")
gr.Markdown(f"- Vision Encoder Hidden Size: {params['vision_encoder']['hidden_size']}")
gr.Markdown(f"- Number of Vision Encoder Layers: {params['vision_encoder']['num_hidden_layers']}")
gr.Markdown(f"- Number of Attention Heads: {params['vision_encoder']['num_attention_heads']}")
gr.Markdown(f"- Image Size: {params['vision_encoder']['image_size']}x{params['vision_encoder']['image_size']}")
gr.Markdown(f"- Patch Size: {params['vision_encoder']['patch_size']}x{params['vision_encoder']['patch_size']}")
if __name__ == "__main__":
demo.launch() |