QuantizedGrok-1 / app.py
Tonic's picture
Update app.py
5387095 verified
import spaces
from transformers import AutoTokenizer, AutoModelForCausalLM
from transformers import LlamaTokenizerFast, BitsAndBytesConfig
import torch
import sentencepiece
import os
import gradio as gr
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:120'
model_id = "eastwind/grok-1-hf-4bit"
tokenizer_id = "Xenova/grok-1-tokenizer"
# tokenizer_path = "./"
# eos_token_id = 7
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_compute_dtype=torch.bfloat16
)
DESCRIPTION = """
# Welcome to Tonic's Grok-1
"""
# tokenizer = AutoTokenizer.from_pretrained(model_id, device_map="auto", trust_remote_code=True)
tokenizer = LlamaTokenizerFast.from_pretrained(tokenizer_id, device_map="cuda", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config = quantization_config, device_map="cuda", trust_remote_code=True)
def format_prompt(user_message, system_message="You are Grok-1, an AI language model created by Tonic-AI. You are a cautious assistant. You carefully follow instructions. You are helpful and harmless and follow ethical guidelines and promote positive behavior.\n\n"):
# prompt = f"<|im_start|>assistant\n{system_message}<|im_end|>\n<|im_start|>\nuser\n{user_message}<|im_end|>\nassistant\n"
prompt = f"{system_message}{user_message}"
return prompt
@spaces.GPU
def predict(message, system_message, max_new_tokens=600, temperature=3.5, top_p=0.9, top_k=40, do_sample=False):
formatted_prompt = format_prompt(message, system_message)
input_ids = tokenizer.encode(formatted_prompt, return_tensors='pt')
input_ids = input_ids.to(model.device)
response_ids = model.generate(
input_ids,
max_length=max_new_tokens + input_ids.shape[1],
temperature=temperature,
top_p=top_p,
top_k=top_k,
no_repeat_ngram_size=9,
pad_token_id=tokenizer.eos_token_id,
do_sample=do_sample
)
response = tokenizer.decode(response_ids[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
truncate_str = "<|im_end|>"
if truncate_str and truncate_str in response:
response = response.split(truncate_str)[0]
return [("bot", response)]
with gr.Blocks() as demo:
gr.Markdown(DESCRIPTION)
with gr.Group():
textbox = gr.Textbox(placeholder='Your Message Here', label='Your Message', lines=2)
system_prompt = gr.Textbox(placeholder='Provide a System Prompt In The First Person', label='System Prompt', lines=2, value="You are YiTonic, an AI language model created by Tonic-AI. You are a cautious assistant. You carefully follow instructions. You are helpful and harmless and you follow ethical guidelines and promote positive behavior.")
with gr.Group():
chatbot = gr.Chatbot(label='Grok-1🀯')
with gr.Group():
submit_button = gr.Button('Submit', variant='primary')
with gr.Accordion(label='Advanced options', open=False):
max_new_tokens = gr.Slider(label='Max New Tokens', minimum=1, maximum=55000, step=1, value=4056)
temperature = gr.Slider(label='Temperature', minimum=0.1, maximum=4.0, step=0.1, value=1.2)
top_p = gr.Slider(label='Top-P (nucleus sampling)', minimum=0.05, maximum=1.0, step=0.05, value=0.9)
top_k = gr.Slider(label='Top-K', minimum=1, maximum=1000, step=1, value=40)
do_sample_checkbox = gr.Checkbox(label='Disable for faster inference', value=True)
submit_button.click(
fn=predict,
inputs=[textbox, system_prompt, max_new_tokens, temperature, top_p, top_k, do_sample_checkbox],
outputs=chatbot
)
demo.launch()