Spaces:
Runtime error
Runtime error
import spaces | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
from transformers import LlamaTokenizerFast, BitsAndBytesConfig | |
import torch | |
import sentencepiece | |
import os | |
import gradio as gr | |
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:120' | |
model_id = "eastwind/grok-1-hf-4bit" | |
tokenizer_id = "Xenova/grok-1-tokenizer" | |
# tokenizer_path = "./" | |
# eos_token_id = 7 | |
quantization_config = BitsAndBytesConfig( | |
load_in_4bit=True, | |
bnb_4bit_use_double_quant=True, | |
bnb_4bit_compute_dtype=torch.bfloat16 | |
) | |
DESCRIPTION = """ | |
# Welcome to Tonic's Grok-1 | |
""" | |
# tokenizer = AutoTokenizer.from_pretrained(model_id, device_map="auto", trust_remote_code=True) | |
tokenizer = LlamaTokenizerFast.from_pretrained(tokenizer_id, device_map="cuda", trust_remote_code=True) | |
model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config = quantization_config, device_map="cuda", trust_remote_code=True) | |
def format_prompt(user_message, system_message="You are Grok-1, an AI language model created by Tonic-AI. You are a cautious assistant. You carefully follow instructions. You are helpful and harmless and follow ethical guidelines and promote positive behavior.\n\n"): | |
# prompt = f"<|im_start|>assistant\n{system_message}<|im_end|>\n<|im_start|>\nuser\n{user_message}<|im_end|>\nassistant\n" | |
prompt = f"{system_message}{user_message}" | |
return prompt | |
def predict(message, system_message, max_new_tokens=600, temperature=3.5, top_p=0.9, top_k=40, do_sample=False): | |
formatted_prompt = format_prompt(message, system_message) | |
input_ids = tokenizer.encode(formatted_prompt, return_tensors='pt') | |
input_ids = input_ids.to(model.device) | |
response_ids = model.generate( | |
input_ids, | |
max_length=max_new_tokens + input_ids.shape[1], | |
temperature=temperature, | |
top_p=top_p, | |
top_k=top_k, | |
no_repeat_ngram_size=9, | |
pad_token_id=tokenizer.eos_token_id, | |
do_sample=do_sample | |
) | |
response = tokenizer.decode(response_ids[:, input_ids.shape[-1]:][0], skip_special_tokens=True) | |
truncate_str = "<|im_end|>" | |
if truncate_str and truncate_str in response: | |
response = response.split(truncate_str)[0] | |
return [("bot", response)] | |
with gr.Blocks() as demo: | |
gr.Markdown(DESCRIPTION) | |
with gr.Group(): | |
textbox = gr.Textbox(placeholder='Your Message Here', label='Your Message', lines=2) | |
system_prompt = gr.Textbox(placeholder='Provide a System Prompt In The First Person', label='System Prompt', lines=2, value="You are YiTonic, an AI language model created by Tonic-AI. You are a cautious assistant. You carefully follow instructions. You are helpful and harmless and you follow ethical guidelines and promote positive behavior.") | |
with gr.Group(): | |
chatbot = gr.Chatbot(label='Grok-1π€―') | |
with gr.Group(): | |
submit_button = gr.Button('Submit', variant='primary') | |
with gr.Accordion(label='Advanced options', open=False): | |
max_new_tokens = gr.Slider(label='Max New Tokens', minimum=1, maximum=55000, step=1, value=4056) | |
temperature = gr.Slider(label='Temperature', minimum=0.1, maximum=4.0, step=0.1, value=1.2) | |
top_p = gr.Slider(label='Top-P (nucleus sampling)', minimum=0.05, maximum=1.0, step=0.05, value=0.9) | |
top_k = gr.Slider(label='Top-K', minimum=1, maximum=1000, step=1, value=40) | |
do_sample_checkbox = gr.Checkbox(label='Disable for faster inference', value=True) | |
submit_button.click( | |
fn=predict, | |
inputs=[textbox, system_prompt, max_new_tokens, temperature, top_p, top_k, do_sample_checkbox], | |
outputs=chatbot | |
) | |
demo.launch() |