Spaces:
Runtime error
Runtime error
File size: 3,276 Bytes
aac91b8 7313dc4 aac91b8 b850126 aac91b8 7313dc4 aac91b8 7313dc4 aac91b8 7313dc4 aac91b8 5d528f9 aac91b8 2c2780a aac91b8 7313dc4 aac91b8 7313dc4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
from typing import List
import typing
from aiser import RestAiServer, KnowledgeBase, SemanticSearchResult, Agent
from aiser.models import ChatMessage
import asyncio
import gradio as gr
import requests
import os
import logging
# Configure logging
logging.basicConfig(level=logging.DEBUG)
# Define environment variables
API_URL = os.getenv("API_URL", "http://ec2-54-166-81-166.compute-1.amazonaws.com:3000/api/v1/prediction/117a5076-c05e-4208-91d9-d0e772bf981e")
API_TOKEN = os.getenv("API_TOKEN", "Bearer 0Ouk5cgljCYuuF3LDfBkIAcuqj9hgWaaK5qRCLfbfrg=")
class ChatBot:
def __init__(self):
self.history = []
def predict(self, input):
new_user_input = input # User input should be converted into model input format
# Prepare payload for API call
payload = {"question": new_user_input}
# Make an external API call
headers = {"Authorization": API_TOKEN}
response = requests.post(API_URL, headers=headers, json=payload)
# Initialize the response text with an error message by default
response_text = f"API call failed with status code {response.status_code}"
if response.status_code == 200:
response_text = response.text # Get the raw text response
# Process the API response and update history
self.history.append(response_text)
# Log API request and response
logging.debug(f"API Request: {API_URL}, Payload: {payload}, Headers: {headers}")
logging.debug(f"API Response: {response.status_code}, Content: {response_text}")
# Return the response text
return response_text
bot = ChatBot()
title = "👋🏻Welcome to Conversate with Bible Scriptures🌠"
description = "Here you can ask questions about bible scriptures or your faith & life"
examples = ["What does the bible say about the value of hard work?"]
iface = gr.Interface(
fn=bot.predict,
title=title,
description=description,
examples=examples,
inputs="text",
outputs="text")
iface.launch()
# Placeholder classes, replace with actual implementations
class KnowledgeBaseExample(KnowledgeBase):
def perform_semantic_search(self, query_text: str, desired_number_of_results: int) -> List[SemanticSearchResult]:
result_example = SemanticSearchResult(
content="This is an example of a semantic search result",
score=0.5,
)
return [result_example for _ in range(desired_number_of_results)]
class AgentExample(Agent):
async def reply(self, messages: typing.List[ChatMessage]) -> typing.AsyncGenerator[ChatMessage, None]:
reply_message = "This is an example of a reply from an agent"
for character in reply_message:
yield ChatMessage(text_content=character)
await asyncio.sleep(0.1)
if __name__ == '__main__':
server = RestAiServer(
agents=[
AgentExample(
agent_id='10209b93-2dd0-47a0-8eb2-33fb018a783b' # replace with your agent id
),
],
knowledge_bases=[
KnowledgeBaseExample(
knowledge_base_id='85bc1c72-b8e0-4042-abcf-8eb2d478f207' # replace with your knowledge base id
),
],
port=5000
)
server.run() |