Tonic's picture
add demo
c55665a unverified
raw
history blame
4.15 kB
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
from datetime import datetime
model_id = "BSC-LT/salamandra-2b-instruct"
device = "cuda" if torch.cuda.is_available() else "cpu"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
torch_dtype=torch.bfloat16,
)
description = """
Salamandra-2b-instruct is a Transformer-based decoder-only language model that has been pre-trained on 7.8 trillion tokens of highly curated data.
The pre-training corpus contains text in 35 European languages and code. This instruction-tuned variant can be used as a general-purpose assistant.
"""
join_us = """
## Join us:
🌟TeamTonic🌟 is always making cool demos! Join our active builder's 🛠️community 👻
[![Join us on Discord](https://img.shields.io/discord/1109943800132010065?label=Discord&logo=discord&style=flat-square)](https://discord.gg/qdfnvSPcqP)
On 🤗Huggingface: [MultiTransformer](https://huggingface.co/MultiTransformer)
On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to🌟 [Build Tonic](https://git.tonic-ai.com/contribute)
🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗
"""
def generate_text(prompt, temperature, max_new_tokens, top_p, repetition_penalty):
date_string = datetime.today().strftime('%Y-%m-%d')
message = [{"role": "user", "content": prompt}]
chat_prompt = tokenizer.apply_chat_template(
message,
tokenize=False,
add_generation_prompt=True,
date_string=date_string
)
inputs = tokenizer.encode(chat_prompt, add_special_tokens=False, return_tensors="pt")
outputs = model.generate(
input_ids=inputs.to(model.device),
max_new_tokens=max_new_tokens,
temperature=temperature,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True
)
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
return generated_text.split("assistant\n")[-1].strip()
def update_output(prompt, temperature, max_new_tokens, top_p, repetition_penalty):
return generate_text(prompt, temperature, max_new_tokens, top_p, repetition_penalty)
with gr.Blocks() as demo:
gr.Markdown("# 🙋🏻‍♂️ Welcome to Tonic's 📲🦎Salamandra-2b-instruct Demo")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown(description)
with gr.Column(scale=1):
gr.Markdown(join_us)
with gr.Row():
with gr.Column(scale=1):
prompt = gr.Textbox(lines=5, label="🙋‍♂️ Input Prompt")
generate_button = gr.Button("Try 📲🦎Salamandra-2b-instruct")
with gr.Accordion("🧪 Parameters", open=False):
temperature = gr.Slider(0.0, 1.0, value=0.7, label="🌡️ Temperature")
max_new_tokens = gr.Slider(1, 1000, value=200, step=1, label="🔢 Max New Tokens")
top_p = gr.Slider(0.0, 1.0, value=0.95, label="⚛️ Top P")
repetition_penalty = gr.Slider(1.0, 2.0, value=1.2, label="🔁 Repetition Penalty")
with gr.Column(scale=1):
output = gr.Textbox(lines=10, label="📲🦎Salamandra")
generate_button.click(
update_output,
inputs=[prompt, temperature, max_new_tokens, top_p, repetition_penalty],
outputs=output
)
gr.Examples(
examples=[
["What are the main advantages of living in a big city like Barcelona?"],
["Explain the process of photosynthesis in simple terms."],
["What are some effective strategies for learning a new language?"],
["Describe the potential impacts of artificial intelligence on the job market in the next decade."],
["What are the key differences between renewable and non-renewable energy sources?"]
],
inputs=prompt,
outputs=prompt,
label="Example Prompts"
)
if __name__ == "__main__":
demo.launch()