Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import torch | |
from datetime import datetime | |
model_id = "BSC-LT/salamandra-2b-instruct" | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, | |
device_map="auto", | |
torch_dtype=torch.bfloat16, | |
) | |
description = """ | |
Salamandra-2b-instruct is a Transformer-based decoder-only language model that has been pre-trained on 7.8 trillion tokens of highly curated data. | |
The pre-training corpus contains text in 35 European languages and code. This instruction-tuned variant can be used as a general-purpose assistant. | |
""" | |
join_us = """ | |
## Join us: | |
🌟TeamTonic🌟 is always making cool demos! Join our active builder's 🛠️community 👻 | |
[](https://discord.gg/qdfnvSPcqP) | |
On 🤗Huggingface: [MultiTransformer](https://huggingface.co/MultiTransformer) | |
On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to🌟 [Build Tonic](https://git.tonic-ai.com/contribute) | |
🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗 | |
""" | |
def generate_text(prompt, temperature, max_new_tokens, top_p, repetition_penalty): | |
date_string = datetime.today().strftime('%Y-%m-%d') | |
message = [{"role": "user", "content": prompt}] | |
chat_prompt = tokenizer.apply_chat_template( | |
message, | |
tokenize=False, | |
add_generation_prompt=True, | |
date_string=date_string | |
) | |
inputs = tokenizer.encode(chat_prompt, add_special_tokens=False, return_tensors="pt") | |
outputs = model.generate( | |
input_ids=inputs.to(model.device), | |
max_new_tokens=max_new_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
repetition_penalty=repetition_penalty, | |
do_sample=True | |
) | |
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return generated_text.split("assistant\n")[-1].strip() | |
def update_output(prompt, temperature, max_new_tokens, top_p, repetition_penalty): | |
return generate_text(prompt, temperature, max_new_tokens, top_p, repetition_penalty) | |
with gr.Blocks() as demo: | |
gr.Markdown("# 🙋🏻♂️ Welcome to Tonic's 📲🦎Salamandra-2b-instruct Demo") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.Markdown(description) | |
with gr.Column(scale=1): | |
gr.Markdown(join_us) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
prompt = gr.Textbox(lines=5, label="🙋♂️ Input Prompt") | |
generate_button = gr.Button("Try 📲🦎Salamandra-2b-instruct") | |
with gr.Accordion("🧪 Parameters", open=False): | |
temperature = gr.Slider(0.0, 1.0, value=0.7, label="🌡️ Temperature") | |
max_new_tokens = gr.Slider(1, 1000, value=200, step=1, label="🔢 Max New Tokens") | |
top_p = gr.Slider(0.0, 1.0, value=0.95, label="⚛️ Top P") | |
repetition_penalty = gr.Slider(1.0, 2.0, value=1.2, label="🔁 Repetition Penalty") | |
with gr.Column(scale=1): | |
output = gr.Textbox(lines=10, label="📲🦎Salamandra") | |
generate_button.click( | |
update_output, | |
inputs=[prompt, temperature, max_new_tokens, top_p, repetition_penalty], | |
outputs=output | |
) | |
gr.Examples( | |
examples=[ | |
["What are the main advantages of living in a big city like Barcelona?"], | |
["Explain the process of photosynthesis in simple terms."], | |
["What are some effective strategies for learning a new language?"], | |
["Describe the potential impacts of artificial intelligence on the job market in the next decade."], | |
["What are the key differences between renewable and non-renewable energy sources?"] | |
], | |
inputs=prompt, | |
outputs=prompt, | |
label="Example Prompts" | |
) | |
if __name__ == "__main__": | |
demo.launch() |