Spaces:
Running
Running
Fix model recovery and deployment scripts - add safetensors support and Windows compatibility
Browse files- cloud_deploy.py +9 -6
- quick_deploy.py +72 -0
cloud_deploy.py
CHANGED
@@ -7,6 +7,7 @@ Run this directly on your cloud instance to deploy your trained model
|
|
7 |
import os
|
8 |
import sys
|
9 |
import logging
|
|
|
10 |
from pathlib import Path
|
11 |
|
12 |
# Setup logging
|
@@ -78,18 +79,20 @@ def main():
|
|
78 |
|
79 |
logger.info(f"Running: {' '.join(cmd)}")
|
80 |
|
81 |
-
# Run the command
|
82 |
-
|
83 |
-
|
84 |
-
if result == 0:
|
85 |
logger.info("β
Model deployment completed successfully!")
|
86 |
logger.info(f"π View your model at: https://huggingface.co/{REPO_NAME}")
|
87 |
logger.info("π Quantized models available at:")
|
88 |
logger.info(f" - https://huggingface.co/{REPO_NAME}/int8 (GPU optimized)")
|
89 |
logger.info(f" - https://huggingface.co/{REPO_NAME}/int4 (CPU optimized)")
|
90 |
return 0
|
91 |
-
|
92 |
-
logger.error("β Model deployment failed!")
|
|
|
|
|
|
|
93 |
return 1
|
94 |
|
95 |
if __name__ == "__main__":
|
|
|
7 |
import os
|
8 |
import sys
|
9 |
import logging
|
10 |
+
import subprocess
|
11 |
from pathlib import Path
|
12 |
|
13 |
# Setup logging
|
|
|
79 |
|
80 |
logger.info(f"Running: {' '.join(cmd)}")
|
81 |
|
82 |
+
# Run the command using subprocess for better argument handling
|
83 |
+
try:
|
84 |
+
result = subprocess.run(cmd, check=True, capture_output=True, text=True)
|
|
|
85 |
logger.info("β
Model deployment completed successfully!")
|
86 |
logger.info(f"π View your model at: https://huggingface.co/{REPO_NAME}")
|
87 |
logger.info("π Quantized models available at:")
|
88 |
logger.info(f" - https://huggingface.co/{REPO_NAME}/int8 (GPU optimized)")
|
89 |
logger.info(f" - https://huggingface.co/{REPO_NAME}/int4 (CPU optimized)")
|
90 |
return 0
|
91 |
+
except subprocess.CalledProcessError as e:
|
92 |
+
logger.error(f"β Model deployment failed!")
|
93 |
+
logger.error(f"Error: {e}")
|
94 |
+
logger.error(f"stdout: {e.stdout}")
|
95 |
+
logger.error(f"stderr: {e.stderr}")
|
96 |
return 1
|
97 |
|
98 |
if __name__ == "__main__":
|
quick_deploy.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
"""
|
3 |
+
Quick Model Deployment Script
|
4 |
+
Direct deployment without argument parsing issues
|
5 |
+
"""
|
6 |
+
|
7 |
+
import os
|
8 |
+
import sys
|
9 |
+
import logging
|
10 |
+
from pathlib import Path
|
11 |
+
|
12 |
+
# Add src to path for imports
|
13 |
+
sys.path.append(os.path.join(os.path.dirname(__file__), 'src'))
|
14 |
+
|
15 |
+
# Setup logging
|
16 |
+
logging.basicConfig(
|
17 |
+
level=logging.INFO,
|
18 |
+
format='%(asctime)s - %(levelname)s - %(message)s'
|
19 |
+
)
|
20 |
+
logger = logging.getLogger(__name__)
|
21 |
+
|
22 |
+
def main():
|
23 |
+
"""Direct deployment without argument parsing"""
|
24 |
+
|
25 |
+
# Configuration
|
26 |
+
MODEL_PATH = "/output-checkpoint"
|
27 |
+
REPO_NAME = "Tonic/smollm3-finetuned"
|
28 |
+
HF_TOKEN = os.getenv('HF_TOKEN')
|
29 |
+
|
30 |
+
if not HF_TOKEN:
|
31 |
+
logger.error("β HF_TOKEN not set")
|
32 |
+
return 1
|
33 |
+
|
34 |
+
if not Path(MODEL_PATH).exists():
|
35 |
+
logger.error(f"β Model path not found: {MODEL_PATH}")
|
36 |
+
return 1
|
37 |
+
|
38 |
+
logger.info("β
Model files validated")
|
39 |
+
|
40 |
+
# Import and run the recovery pipeline directly
|
41 |
+
try:
|
42 |
+
from recover_model import ModelRecoveryPipeline
|
43 |
+
|
44 |
+
# Initialize pipeline
|
45 |
+
pipeline = ModelRecoveryPipeline(
|
46 |
+
model_path=MODEL_PATH,
|
47 |
+
repo_name=REPO_NAME,
|
48 |
+
hf_token=HF_TOKEN,
|
49 |
+
private=False,
|
50 |
+
quantize=True,
|
51 |
+
quant_types=["int8_weight_only", "int4_weight_only"],
|
52 |
+
author_name="Tonic",
|
53 |
+
model_description="A fine-tuned SmolLM3 model for improved text generation and conversation capabilities"
|
54 |
+
)
|
55 |
+
|
56 |
+
# Run the complete pipeline
|
57 |
+
success = pipeline.run_complete_pipeline()
|
58 |
+
|
59 |
+
if success:
|
60 |
+
logger.info("β
Model deployment completed successfully!")
|
61 |
+
logger.info(f"π View your model at: https://huggingface.co/{REPO_NAME}")
|
62 |
+
return 0
|
63 |
+
else:
|
64 |
+
logger.error("β Model deployment failed!")
|
65 |
+
return 1
|
66 |
+
|
67 |
+
except Exception as e:
|
68 |
+
logger.error(f"β Error during deployment: {e}")
|
69 |
+
return 1
|
70 |
+
|
71 |
+
if __name__ == "__main__":
|
72 |
+
exit(main())
|