Spaces:
Running
Running
improves spaces deployment , configuration for custom settings , adds interface for spaces deployment
Browse files- config/train_smollm3.py +2 -0
- interface.py +1165 -0
- launch.sh +159 -85
- requirements/requirements_core.txt +3 -1
- scripts/deploy_demo_space.py +151 -31
- scripts/training/train_gpt_oss.py +2 -1
- src/monitoring.py +69 -33
- src/trackio.py +8 -1
- src/train.py +12 -8
- templates/model_card.md +1 -1
- templates/spaces/demo_gpt/app.py +56 -9
- templates/spaces/trackio/app.py +266 -33
config/train_smollm3.py
CHANGED
@@ -82,6 +82,8 @@ class SmolLM3Config:
|
|
82 |
# HF Datasets configuration
|
83 |
hf_token: Optional[str] = None
|
84 |
dataset_repo: Optional[str] = None
|
|
|
|
|
85 |
|
86 |
|
87 |
def __post_init__(self):
|
|
|
82 |
# HF Datasets configuration
|
83 |
hf_token: Optional[str] = None
|
84 |
dataset_repo: Optional[str] = None
|
85 |
+
# Monitoring mode: 'both' | 'dataset' | 'trackio' | 'none'
|
86 |
+
monitoring_mode: str = 'both'
|
87 |
|
88 |
|
89 |
def __post_init__(self):
|
interface.py
ADDED
@@ -0,0 +1,1165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
"""
|
3 |
+
Gradio Interface for SmolLM3/GPT-OSS Fine-tuning Pipeline
|
4 |
+
|
5 |
+
This app mirrors the core flow of launch.sh with a click-and-run UI.
|
6 |
+
Tokens are read from environment variables:
|
7 |
+
- HF_WRITE_TOKEN (required)
|
8 |
+
- HF_READ_TOKEN (optional; used to switch the Trackio Space token after training)
|
9 |
+
|
10 |
+
Key steps (configurable via UI):
|
11 |
+
1) Optional HF Dataset repo setup for Trackio
|
12 |
+
2) Optional Trackio Space deployment
|
13 |
+
3) Training (SmolLM3 or GPT-OSS)
|
14 |
+
4) Push trained model to the HF Hub
|
15 |
+
5) Optional switch Trackio HF_TOKEN to read token
|
16 |
+
|
17 |
+
This uses the existing scripts in scripts/ and config/ to avoid code duplication.
|
18 |
+
"""
|
19 |
+
|
20 |
+
from __future__ import annotations
|
21 |
+
|
22 |
+
import os
|
23 |
+
import sys
|
24 |
+
import time
|
25 |
+
import json
|
26 |
+
import shlex
|
27 |
+
import traceback
|
28 |
+
import importlib.util
|
29 |
+
from dataclasses import dataclass
|
30 |
+
from datetime import datetime
|
31 |
+
from pathlib import Path
|
32 |
+
from typing import Dict, Any, Generator, Optional, Tuple
|
33 |
+
|
34 |
+
# Third-party
|
35 |
+
try:
|
36 |
+
import gradio as gr # type: ignore
|
37 |
+
except Exception as _e:
|
38 |
+
raise RuntimeError(
|
39 |
+
"Gradio is required. Please install it first: pip install gradio"
|
40 |
+
) from _e
|
41 |
+
|
42 |
+
|
43 |
+
# --------------------------------------------------------------------------------------
|
44 |
+
# Utilities
|
45 |
+
# --------------------------------------------------------------------------------------
|
46 |
+
|
47 |
+
PROJECT_ROOT = Path(__file__).resolve().parent
|
48 |
+
|
49 |
+
|
50 |
+
def mask_token(token: Optional[str]) -> str:
|
51 |
+
if not token:
|
52 |
+
return "<not set>"
|
53 |
+
token = str(token)
|
54 |
+
if len(token) <= 8:
|
55 |
+
return "*" * len(token)
|
56 |
+
return f"{token[:4]}****{token[-4:]}"
|
57 |
+
|
58 |
+
|
59 |
+
def get_python() -> str:
|
60 |
+
return sys.executable or "python"
|
61 |
+
|
62 |
+
|
63 |
+
def get_username_from_token(token: str) -> Optional[str]:
|
64 |
+
try:
|
65 |
+
from huggingface_hub import HfApi # type: ignore
|
66 |
+
api = HfApi(token=token)
|
67 |
+
info = api.whoami()
|
68 |
+
if isinstance(info, dict):
|
69 |
+
return info.get("name") or info.get("username")
|
70 |
+
if isinstance(info, str):
|
71 |
+
return info
|
72 |
+
except Exception:
|
73 |
+
return None
|
74 |
+
return None
|
75 |
+
|
76 |
+
|
77 |
+
def detect_nvidia_driver() -> Tuple[bool, str]:
|
78 |
+
"""Detect NVIDIA driver/GPU presence with multiple strategies.
|
79 |
+
|
80 |
+
Returns (available, human_message).
|
81 |
+
"""
|
82 |
+
# 1) Try torch CUDA
|
83 |
+
try:
|
84 |
+
import torch # type: ignore
|
85 |
+
if torch.cuda.is_available():
|
86 |
+
try:
|
87 |
+
num = torch.cuda.device_count()
|
88 |
+
names = [torch.cuda.get_device_name(i) for i in range(num)]
|
89 |
+
return True, f"NVIDIA GPU detected: {', '.join(names)}"
|
90 |
+
except Exception:
|
91 |
+
return True, "NVIDIA GPU detected (torch.cuda available)"
|
92 |
+
except Exception:
|
93 |
+
pass
|
94 |
+
|
95 |
+
# 2) Try NVML via pynvml
|
96 |
+
try:
|
97 |
+
import pynvml # type: ignore
|
98 |
+
try:
|
99 |
+
pynvml.nvmlInit()
|
100 |
+
cnt = pynvml.nvmlDeviceGetCount()
|
101 |
+
names = []
|
102 |
+
for i in range(cnt):
|
103 |
+
h = pynvml.nvmlDeviceGetHandleByIndex(i)
|
104 |
+
names.append(pynvml.nvmlDeviceGetName(h).decode("utf-8", errors="ignore"))
|
105 |
+
drv = pynvml.nvmlSystemGetDriverVersion().decode("utf-8", errors="ignore")
|
106 |
+
pynvml.nvmlShutdown()
|
107 |
+
if cnt > 0:
|
108 |
+
return True, f"NVIDIA driver {drv}; GPUs: {', '.join(names)}"
|
109 |
+
except Exception:
|
110 |
+
pass
|
111 |
+
except Exception:
|
112 |
+
pass
|
113 |
+
|
114 |
+
# 3) Try nvidia-smi
|
115 |
+
try:
|
116 |
+
import subprocess
|
117 |
+
res = subprocess.run(["nvidia-smi", "-L"], capture_output=True, text=True, timeout=3)
|
118 |
+
if res.returncode == 0 and res.stdout.strip():
|
119 |
+
return True, res.stdout.strip().splitlines()[0]
|
120 |
+
except Exception:
|
121 |
+
pass
|
122 |
+
|
123 |
+
return False, "No NVIDIA driver/GPU detected"
|
124 |
+
|
125 |
+
|
126 |
+
def duplicate_space_hint() -> str:
|
127 |
+
space_id = os.environ.get("SPACE_ID") or os.environ.get("HF_SPACE_ID")
|
128 |
+
if space_id:
|
129 |
+
space_url = f"https://huggingface.co/spaces/{space_id}"
|
130 |
+
dup_url = f"{space_url}?duplicate=true"
|
131 |
+
return (
|
132 |
+
f"ℹ️ No NVIDIA driver detected. If you're on Hugging Face Spaces, "
|
133 |
+
f"please duplicate this Space to GPU hardware: [Duplicate this Space]({dup_url})."
|
134 |
+
)
|
135 |
+
return (
|
136 |
+
"ℹ️ No NVIDIA driver detected. To enable training, run on a machine with an NVIDIA GPU/driver "
|
137 |
+
"or duplicate this Space on Hugging Face with GPU hardware."
|
138 |
+
)
|
139 |
+
|
140 |
+
|
141 |
+
def _write_generated_config(filename: str, content: str) -> Path:
|
142 |
+
"""Write a generated config under config/ and return the full path."""
|
143 |
+
cfg_dir = PROJECT_ROOT / "config"
|
144 |
+
cfg_dir.mkdir(parents=True, exist_ok=True)
|
145 |
+
path = cfg_dir / filename
|
146 |
+
with open(path, "w", encoding="utf-8") as f:
|
147 |
+
f.write(content)
|
148 |
+
return path
|
149 |
+
|
150 |
+
|
151 |
+
def generate_medical_o1_config_file(
|
152 |
+
dataset_config: str,
|
153 |
+
system_message: Optional[str],
|
154 |
+
developer_message: Optional[str],
|
155 |
+
num_train_epochs: float,
|
156 |
+
batch_size: int,
|
157 |
+
gradient_accumulation_steps: int,
|
158 |
+
learning_rate: float,
|
159 |
+
max_seq_length: int,
|
160 |
+
) -> Path:
|
161 |
+
"""Create a GPT-OSS Medical o1 SFT config file from user inputs."""
|
162 |
+
# Sanitize quotes in messages
|
163 |
+
def _q(s: Optional[str]) -> str:
|
164 |
+
if s is None or s == "":
|
165 |
+
return "None"
|
166 |
+
return repr(s)
|
167 |
+
|
168 |
+
py = f"""
|
169 |
+
from config.train_gpt_oss_custom import GPTOSSEnhancedCustomConfig
|
170 |
+
|
171 |
+
config = GPTOSSEnhancedCustomConfig(
|
172 |
+
dataset_name="FreedomIntelligence/medical-o1-reasoning-SFT",
|
173 |
+
dataset_config={repr(dataset_config)},
|
174 |
+
dataset_split="train",
|
175 |
+
dataset_format="medical_o1_sft",
|
176 |
+
|
177 |
+
# Field mapping and prefixes
|
178 |
+
input_field="Question",
|
179 |
+
target_field="Response",
|
180 |
+
question_field="Question",
|
181 |
+
reasoning_field="Complex_CoT",
|
182 |
+
response_field="Response",
|
183 |
+
reason_prefix="Reasoning: ",
|
184 |
+
answer_prefix="Final Answer: ",
|
185 |
+
|
186 |
+
# Optional context
|
187 |
+
system_message={_q(system_message)},
|
188 |
+
developer_message={_q(developer_message)},
|
189 |
+
|
190 |
+
# Training hyperparameters
|
191 |
+
num_train_epochs={num_train_epochs},
|
192 |
+
batch_size={batch_size},
|
193 |
+
gradient_accumulation_steps={gradient_accumulation_steps},
|
194 |
+
learning_rate={learning_rate},
|
195 |
+
min_lr=2e-5,
|
196 |
+
weight_decay=0.01,
|
197 |
+
warmup_ratio=0.03,
|
198 |
+
|
199 |
+
# Sequence length
|
200 |
+
max_seq_length={max_seq_length},
|
201 |
+
|
202 |
+
# Precision & performance
|
203 |
+
fp16=False,
|
204 |
+
bf16=True,
|
205 |
+
dataloader_num_workers=4,
|
206 |
+
dataloader_pin_memory=True,
|
207 |
+
dataloader_prefetch_factor=2,
|
208 |
+
group_by_length=True,
|
209 |
+
remove_unused_columns=True,
|
210 |
+
|
211 |
+
# LoRA & quantization
|
212 |
+
use_lora=True,
|
213 |
+
lora_config={
|
214 |
+
"r": 16,
|
215 |
+
"lora_alpha": 32,
|
216 |
+
"lora_dropout": 0.05,
|
217 |
+
"target_modules": "all-linear",
|
218 |
+
"target_parameters": [
|
219 |
+
"7.mlp.experts.gate_up_proj",
|
220 |
+
"7.mlp.experts.down_proj",
|
221 |
+
"15.mlp.experts.gate_up_proj",
|
222 |
+
"15.mlp.experts.down_proj",
|
223 |
+
"23.mlp.experts.gate_up_proj",
|
224 |
+
"23.mlp.experts.down_proj",
|
225 |
+
],
|
226 |
+
"bias": "none",
|
227 |
+
"task_type": "CAUSAL_LM",
|
228 |
+
},
|
229 |
+
use_quantization=True,
|
230 |
+
quantization_config={
|
231 |
+
"dequantize": True,
|
232 |
+
"load_in_4bit": False,
|
233 |
+
},
|
234 |
+
|
235 |
+
# Logging & evaluation
|
236 |
+
eval_strategy="steps",
|
237 |
+
eval_steps=100,
|
238 |
+
logging_steps=10,
|
239 |
+
save_strategy="steps",
|
240 |
+
save_steps=500,
|
241 |
+
save_total_limit=3,
|
242 |
+
metric_for_best_model="eval_loss",
|
243 |
+
greater_is_better=False,
|
244 |
+
)
|
245 |
+
"""
|
246 |
+
return _write_generated_config("_generated_gpt_oss_medical_o1_sft.py", py)
|
247 |
+
|
248 |
+
|
249 |
+
def generate_gpt_oss_custom_config_file(
|
250 |
+
dataset_name: str,
|
251 |
+
dataset_split: str,
|
252 |
+
dataset_format: str,
|
253 |
+
input_field: str,
|
254 |
+
target_field: Optional[str],
|
255 |
+
system_message: Optional[str],
|
256 |
+
developer_message: Optional[str],
|
257 |
+
model_identity: Optional[str],
|
258 |
+
max_samples: Optional[int],
|
259 |
+
min_length: int,
|
260 |
+
max_length: Optional[int],
|
261 |
+
num_train_epochs: float,
|
262 |
+
batch_size: int,
|
263 |
+
gradient_accumulation_steps: int,
|
264 |
+
learning_rate: float,
|
265 |
+
min_lr: float,
|
266 |
+
weight_decay: float,
|
267 |
+
warmup_ratio: float,
|
268 |
+
max_seq_length: int,
|
269 |
+
lora_r: int,
|
270 |
+
lora_alpha: int,
|
271 |
+
lora_dropout: float,
|
272 |
+
mixed_precision: str, # "bf16"|"fp16"|"fp32"
|
273 |
+
num_workers: int,
|
274 |
+
quantization_type: str, # "mxfp4"|"bnb4"|"none"
|
275 |
+
max_grad_norm: float,
|
276 |
+
logging_steps: int,
|
277 |
+
eval_steps: int,
|
278 |
+
save_steps: int,
|
279 |
+
) -> Path:
|
280 |
+
# Precision flags
|
281 |
+
if mixed_precision.lower() == "bf16":
|
282 |
+
fp16_flag = False
|
283 |
+
bf16_flag = True
|
284 |
+
elif mixed_precision.lower() == "fp16":
|
285 |
+
fp16_flag = True
|
286 |
+
bf16_flag = False
|
287 |
+
else:
|
288 |
+
fp16_flag = False
|
289 |
+
bf16_flag = False
|
290 |
+
|
291 |
+
# Quantization flags/config
|
292 |
+
if quantization_type == "mxfp4":
|
293 |
+
use_quant = True
|
294 |
+
quant_cfg = '{"dequantize": True, "load_in_4bit": False}'
|
295 |
+
elif quantization_type == "bnb4":
|
296 |
+
use_quant = True
|
297 |
+
quant_cfg = '{"dequantize": False, "load_in_4bit": True, "bnb_4bit_compute_dtype": "bfloat16", "bnb_4bit_use_double_quant": True, "bnb_4bit_quant_type": "nf4"}'
|
298 |
+
else:
|
299 |
+
use_quant = False
|
300 |
+
quant_cfg = '{"dequantize": False, "load_in_4bit": False}'
|
301 |
+
|
302 |
+
def _q(s: Optional[str]) -> str:
|
303 |
+
if s is None or s == "":
|
304 |
+
return "None"
|
305 |
+
return repr(s)
|
306 |
+
|
307 |
+
py = f"""
|
308 |
+
from config.train_gpt_oss_custom import GPTOSSEnhancedCustomConfig
|
309 |
+
|
310 |
+
config = GPTOSSEnhancedCustomConfig(
|
311 |
+
# Dataset
|
312 |
+
dataset_name={repr(dataset_name)},
|
313 |
+
dataset_split={repr(dataset_split)},
|
314 |
+
dataset_format={repr(dataset_format)},
|
315 |
+
input_field={repr(input_field)},
|
316 |
+
target_field={repr(target_field)} if {repr(target_field)} != 'None' else None,
|
317 |
+
system_message={_q(system_message)},
|
318 |
+
developer_message={_q(developer_message)},
|
319 |
+
max_samples={repr(max_samples)} if {repr(max_samples)} != 'None' else None,
|
320 |
+
min_length={min_length},
|
321 |
+
max_length={repr(max_length)} if {repr(max_length)} != 'None' else None,
|
322 |
+
|
323 |
+
# Training hyperparameters
|
324 |
+
num_train_epochs={num_train_epochs},
|
325 |
+
batch_size={batch_size},
|
326 |
+
gradient_accumulation_steps={gradient_accumulation_steps},
|
327 |
+
learning_rate={learning_rate},
|
328 |
+
min_lr={min_lr},
|
329 |
+
weight_decay={weight_decay},
|
330 |
+
warmup_ratio={warmup_ratio},
|
331 |
+
max_grad_norm={max_grad_norm},
|
332 |
+
|
333 |
+
# Model
|
334 |
+
max_seq_length={max_seq_length},
|
335 |
+
|
336 |
+
# Precision
|
337 |
+
fp16={str(fp16_flag)},
|
338 |
+
bf16={str(bf16_flag)},
|
339 |
+
|
340 |
+
# LoRA
|
341 |
+
lora_config={{
|
342 |
+
"r": {lora_r},
|
343 |
+
"lora_alpha": {lora_alpha},
|
344 |
+
"lora_dropout": {lora_dropout},
|
345 |
+
"target_modules": "all-linear",
|
346 |
+
"bias": "none",
|
347 |
+
"task_type": "CAUSAL_LM",
|
348 |
+
}},
|
349 |
+
|
350 |
+
# Quantization
|
351 |
+
use_quantization={str(use_quant)},
|
352 |
+
quantization_config={quant_cfg},
|
353 |
+
|
354 |
+
# Performance
|
355 |
+
dataloader_num_workers={num_workers},
|
356 |
+
dataloader_pin_memory=True,
|
357 |
+
group_by_length=True,
|
358 |
+
|
359 |
+
# Logging & eval
|
360 |
+
logging_steps={logging_steps},
|
361 |
+
eval_steps={eval_steps},
|
362 |
+
save_steps={save_steps},
|
363 |
+
|
364 |
+
# Chat template (Harmony)
|
365 |
+
chat_template_kwargs={{
|
366 |
+
"add_generation_prompt": True,
|
367 |
+
"tokenize": False,
|
368 |
+
"auto_insert_role": True,
|
369 |
+
"reasoning_effort": "medium",
|
370 |
+
"model_identity": {_q(model_identity) if _q(model_identity) != 'None' else repr('You are GPT-Tonic, a large language model trained by TonicAI.')},
|
371 |
+
"builtin_tools": [],
|
372 |
+
}},
|
373 |
+
)
|
374 |
+
"""
|
375 |
+
return _write_generated_config("_generated_gpt_oss_custom.py", py)
|
376 |
+
|
377 |
+
|
378 |
+
def generate_smollm3_custom_config_file(
|
379 |
+
model_name: str,
|
380 |
+
dataset_name: Optional[str],
|
381 |
+
max_seq_length: int,
|
382 |
+
batch_size: int,
|
383 |
+
gradient_accumulation_steps: int,
|
384 |
+
learning_rate: float,
|
385 |
+
save_steps: int,
|
386 |
+
eval_steps: int,
|
387 |
+
logging_steps: int,
|
388 |
+
filter_bad_entries: bool,
|
389 |
+
input_field: str,
|
390 |
+
target_field: str,
|
391 |
+
sample_size: Optional[int],
|
392 |
+
sample_seed: int,
|
393 |
+
trainer_type: str,
|
394 |
+
) -> Path:
|
395 |
+
# Create subclass to include dataset fields similar to other configs
|
396 |
+
def _bool(b: bool) -> str:
|
397 |
+
return "True" if b else "False"
|
398 |
+
|
399 |
+
ds_section = """
|
400 |
+
# HF Dataset configuration
|
401 |
+
dataset_name={}
|
402 |
+
dataset_split="train"
|
403 |
+
input_field={}
|
404 |
+
target_field={}
|
405 |
+
filter_bad_entries={}
|
406 |
+
bad_entry_field="bad_entry"
|
407 |
+
sample_size={}
|
408 |
+
sample_seed={}
|
409 |
+
""".format(
|
410 |
+
repr(dataset_name) if dataset_name else "None",
|
411 |
+
repr(input_field),
|
412 |
+
repr(target_field),
|
413 |
+
_bool(filter_bad_entries),
|
414 |
+
repr(sample_size) if sample_size is not None else "None",
|
415 |
+
sample_seed,
|
416 |
+
)
|
417 |
+
|
418 |
+
py = f"""
|
419 |
+
from dataclasses import dataclass
|
420 |
+
from typing import Optional
|
421 |
+
from config.train_smollm3 import SmolLM3Config
|
422 |
+
|
423 |
+
@dataclass
|
424 |
+
class SmolLM3GeneratedConfig(SmolLM3Config):
|
425 |
+
{ds_section}
|
426 |
+
|
427 |
+
config = SmolLM3GeneratedConfig(
|
428 |
+
trainer_type={repr(trainer_type.lower())},
|
429 |
+
model_name={repr(model_name)},
|
430 |
+
max_seq_length={max_seq_length},
|
431 |
+
use_flash_attention=True,
|
432 |
+
use_gradient_checkpointing=True,
|
433 |
+
|
434 |
+
batch_size={batch_size},
|
435 |
+
gradient_accumulation_steps={gradient_accumulation_steps},
|
436 |
+
learning_rate={learning_rate},
|
437 |
+
weight_decay=0.01,
|
438 |
+
warmup_steps=100,
|
439 |
+
max_iters=None,
|
440 |
+
eval_interval={eval_steps},
|
441 |
+
log_interval={logging_steps},
|
442 |
+
save_interval={save_steps},
|
443 |
+
|
444 |
+
optimizer="adamw",
|
445 |
+
beta1=0.9,
|
446 |
+
beta2=0.95,
|
447 |
+
eps=1e-8,
|
448 |
+
scheduler="cosine",
|
449 |
+
min_lr=1e-6,
|
450 |
+
fp16=True,
|
451 |
+
bf16=False,
|
452 |
+
save_steps={save_steps},
|
453 |
+
eval_steps={eval_steps},
|
454 |
+
logging_steps={logging_steps},
|
455 |
+
save_total_limit=3,
|
456 |
+
eval_strategy="steps",
|
457 |
+
metric_for_best_model="eval_loss",
|
458 |
+
greater_is_better=False,
|
459 |
+
load_best_model_at_end=True,
|
460 |
+
)
|
461 |
+
"""
|
462 |
+
return _write_generated_config("_generated_smollm3_custom.py", py)
|
463 |
+
|
464 |
+
def ensure_dataset_repo(username: str, dataset_name: str, token: str) -> Tuple[str, bool, str]:
|
465 |
+
"""Create or ensure dataset repo exists. Returns (repo_id, created_or_exists, message)."""
|
466 |
+
from huggingface_hub import create_repo # type: ignore
|
467 |
+
repo_id = f"{username}/{dataset_name}"
|
468 |
+
try:
|
469 |
+
create_repo(repo_id=repo_id, repo_type="dataset", token=token, exist_ok=True, private=False)
|
470 |
+
return repo_id, True, f"Dataset repo ready: {repo_id}"
|
471 |
+
except Exception as e:
|
472 |
+
return repo_id, False, f"Failed to create dataset repo {repo_id}: {e}"
|
473 |
+
|
474 |
+
|
475 |
+
def import_config_object(config_path: Path) -> Optional[Any]:
|
476 |
+
"""Import a config file and return its 'config' object if present, else None."""
|
477 |
+
try:
|
478 |
+
spec = importlib.util.spec_from_file_location("config_module", str(config_path))
|
479 |
+
if not spec or not spec.loader:
|
480 |
+
return None
|
481 |
+
module = importlib.util.module_from_spec(spec)
|
482 |
+
spec.loader.exec_module(module) # type: ignore
|
483 |
+
if hasattr(module, "config"):
|
484 |
+
return getattr(module, "config")
|
485 |
+
return None
|
486 |
+
except Exception:
|
487 |
+
return None
|
488 |
+
|
489 |
+
|
490 |
+
def run_command_stream(args: list[str], env: Dict[str, str], cwd: Optional[Path] = None) -> Generator[str, None, int]:
|
491 |
+
"""Run a command and yield stdout/stderr lines as they arrive. Returns exit code at the end."""
|
492 |
+
import subprocess
|
493 |
+
|
494 |
+
yield f"$ {' '.join(shlex.quote(a) for a in ([get_python()] + args))}"
|
495 |
+
process = subprocess.Popen(
|
496 |
+
[get_python()] + args,
|
497 |
+
stdout=subprocess.PIPE,
|
498 |
+
stderr=subprocess.STDOUT,
|
499 |
+
text=True,
|
500 |
+
env=env,
|
501 |
+
cwd=str(cwd or PROJECT_ROOT),
|
502 |
+
bufsize=1,
|
503 |
+
universal_newlines=True,
|
504 |
+
)
|
505 |
+
assert process.stdout is not None
|
506 |
+
for line in iter(process.stdout.readline, ""):
|
507 |
+
yield line.rstrip()
|
508 |
+
process.stdout.close()
|
509 |
+
code = process.wait()
|
510 |
+
yield f"[exit_code={code}]"
|
511 |
+
return code
|
512 |
+
|
513 |
+
|
514 |
+
# --------------------------------------------------------------------------------------
|
515 |
+
# Configuration Mappings (mirror launch.sh)
|
516 |
+
# --------------------------------------------------------------------------------------
|
517 |
+
|
518 |
+
SMOL_CONFIGS = {
|
519 |
+
"Basic Training": {
|
520 |
+
"config_file": "config/train_smollm3.py",
|
521 |
+
"default_model": "HuggingFaceTB/SmolLM3-3B",
|
522 |
+
},
|
523 |
+
"H100 Lightweight (Rapid)": {
|
524 |
+
"config_file": "config/train_smollm3_h100_lightweight.py",
|
525 |
+
"default_model": "HuggingFaceTB/SmolLM3-3B",
|
526 |
+
},
|
527 |
+
"A100 Large Scale": {
|
528 |
+
"config_file": "config/train_smollm3_openhermes_fr_a100_large.py",
|
529 |
+
"default_model": "HuggingFaceTB/SmolLM3-3B",
|
530 |
+
},
|
531 |
+
"Multiple Passes": {
|
532 |
+
"config_file": "config/train_smollm3_openhermes_fr_a100_multiple_passes.py",
|
533 |
+
"default_model": "HuggingFaceTB/SmolLM3-3B",
|
534 |
+
},
|
535 |
+
}
|
536 |
+
|
537 |
+
GPT_OSS_CONFIGS = {
|
538 |
+
"GPT-OSS Basic Training": {
|
539 |
+
"config_file": "config/train_gpt_oss_basic.py",
|
540 |
+
"default_model": "openai/gpt-oss-20b",
|
541 |
+
},
|
542 |
+
"GPT-OSS H100 Optimized": {
|
543 |
+
"config_file": "config/train_gpt_oss_h100_optimized.py",
|
544 |
+
"default_model": "openai/gpt-oss-20b",
|
545 |
+
},
|
546 |
+
"GPT-OSS Multilingual Reasoning": {
|
547 |
+
"config_file": "config/train_gpt_oss_multilingual_reasoning.py",
|
548 |
+
"default_model": "openai/gpt-oss-20b",
|
549 |
+
},
|
550 |
+
"GPT-OSS Memory Optimized": {
|
551 |
+
"config_file": "config/train_gpt_oss_memory_optimized.py",
|
552 |
+
"default_model": "openai/gpt-oss-20b",
|
553 |
+
},
|
554 |
+
"GPT-OSS OpenHermes-FR (Recommended)": {
|
555 |
+
"config_file": "config/train_gpt_oss_openhermes_fr.py",
|
556 |
+
"default_model": "openai/gpt-oss-20b",
|
557 |
+
},
|
558 |
+
"GPT-OSS OpenHermes-FR Memory Optimized": {
|
559 |
+
"config_file": "config/train_gpt_oss_openhermes_fr_memory_optimized.py",
|
560 |
+
"default_model": "openai/gpt-oss-20b",
|
561 |
+
},
|
562 |
+
# Custom dataset and medical SFT can be added later as advanced UI panels
|
563 |
+
}
|
564 |
+
|
565 |
+
|
566 |
+
def get_config_map(family: str) -> Dict[str, Dict[str, str]]:
|
567 |
+
return SMOL_CONFIGS if family == "SmolLM3" else GPT_OSS_CONFIGS
|
568 |
+
|
569 |
+
|
570 |
+
# --------------------------------------------------------------------------------------
|
571 |
+
# Pipeline Orchestration
|
572 |
+
# --------------------------------------------------------------------------------------
|
573 |
+
|
574 |
+
@dataclass
|
575 |
+
class PipelineInputs:
|
576 |
+
model_family: str
|
577 |
+
config_choice: str
|
578 |
+
trainer_type: str # "SFT" | "DPO"
|
579 |
+
monitoring_mode: str # "both" | "trackio" | "dataset" | "none"
|
580 |
+
experiment_name: str
|
581 |
+
repo_short: str
|
582 |
+
author_name: str
|
583 |
+
model_description: str
|
584 |
+
trackio_space_name: Optional[str]
|
585 |
+
deploy_trackio_space: bool
|
586 |
+
create_dataset_repo: bool
|
587 |
+
push_to_hub: bool
|
588 |
+
switch_to_read_after: bool
|
589 |
+
scheduler_override: Optional[str]
|
590 |
+
min_lr: Optional[float]
|
591 |
+
min_lr_rate: Optional[float]
|
592 |
+
|
593 |
+
|
594 |
+
def make_defaults(model_family: str) -> Tuple[str, str]:
|
595 |
+
ts = datetime.now().strftime("%Y%m%d_%H%M%S")
|
596 |
+
family_slug = "gpt-oss" if model_family == "GPT-OSS" else "smollm3"
|
597 |
+
exp = f"smolfactory-{family_slug}_{ts}"
|
598 |
+
repo_short = f"smolfactory-{datetime.now().strftime('%Y%m%d')}"
|
599 |
+
return exp, repo_short
|
600 |
+
|
601 |
+
|
602 |
+
def run_pipeline(params: PipelineInputs) -> Generator[str, None, None]:
|
603 |
+
# Tokens from environment
|
604 |
+
write_token = os.environ.get("HF_WRITE_TOKEN") or os.environ.get("HF_TOKEN")
|
605 |
+
read_token = os.environ.get("HF_READ_TOKEN")
|
606 |
+
|
607 |
+
if not write_token:
|
608 |
+
yield "❌ HF_WRITE_TOKEN (or HF_TOKEN) is not set in the environment."
|
609 |
+
return
|
610 |
+
|
611 |
+
# Resolve username
|
612 |
+
username = get_username_from_token(write_token) or os.environ.get("HF_USERNAME")
|
613 |
+
if not username:
|
614 |
+
yield "❌ Could not resolve Hugging Face username from token."
|
615 |
+
return
|
616 |
+
yield f"✅ Authenticated as: {username}"
|
617 |
+
|
618 |
+
# Compute Trackio URL if applicable
|
619 |
+
trackio_url: Optional[str] = None
|
620 |
+
if params.monitoring_mode != "none" and params.trackio_space_name:
|
621 |
+
trackio_url = f"https://huggingface.co/spaces/{username}/{params.trackio_space_name}"
|
622 |
+
yield f"Trackio Space URL: {trackio_url}"
|
623 |
+
|
624 |
+
# Decide space deploy token per monitoring mode
|
625 |
+
space_deploy_token = write_token if params.monitoring_mode in ("both", "trackio") else (read_token or write_token)
|
626 |
+
|
627 |
+
# Dataset repo setup
|
628 |
+
dataset_repo = f"{username}/trackio-experiments"
|
629 |
+
if params.create_dataset_repo and params.monitoring_mode != "none":
|
630 |
+
yield f"Creating/ensuring dataset repo exists: {dataset_repo}"
|
631 |
+
rid, ok, msg = ensure_dataset_repo(username, "trackio-experiments", write_token)
|
632 |
+
yield ("✅ " if ok else "⚠️ ") + msg
|
633 |
+
dataset_repo = rid
|
634 |
+
|
635 |
+
# Resolve config file and model name
|
636 |
+
conf_map = get_config_map(params.model_family)
|
637 |
+
if params.config_choice not in conf_map:
|
638 |
+
yield f"❌ Unknown config choice: {params.config_choice}"
|
639 |
+
return
|
640 |
+
config_file = PROJECT_ROOT / conf_map[params.config_choice]["config_file"]
|
641 |
+
base_model_fallback = conf_map[params.config_choice]["default_model"]
|
642 |
+
if not config_file.exists():
|
643 |
+
yield f"❌ Config file not found: {config_file}"
|
644 |
+
return
|
645 |
+
cfg_obj = import_config_object(config_file)
|
646 |
+
base_model = getattr(cfg_obj, "model_name", base_model_fallback) if cfg_obj else base_model_fallback
|
647 |
+
dataset_name = getattr(cfg_obj, "dataset_name", None) if cfg_obj else None
|
648 |
+
batch_size = getattr(cfg_obj, "batch_size", None) if cfg_obj else None
|
649 |
+
learning_rate = getattr(cfg_obj, "learning_rate", None) if cfg_obj else None
|
650 |
+
max_seq_length = getattr(cfg_obj, "max_seq_length", None) if cfg_obj else None
|
651 |
+
|
652 |
+
# Prepare env for subprocesses
|
653 |
+
env = os.environ.copy()
|
654 |
+
env["HF_TOKEN"] = write_token
|
655 |
+
env["HUGGING_FACE_HUB_TOKEN"] = write_token
|
656 |
+
env["HF_USERNAME"] = username
|
657 |
+
env["TRACKIO_DATASET_REPO"] = dataset_repo
|
658 |
+
env["MONITORING_MODE"] = params.monitoring_mode
|
659 |
+
|
660 |
+
# Optional Trackio Space deployment
|
661 |
+
if params.deploy_trackio_space and params.monitoring_mode != "none" and params.trackio_space_name:
|
662 |
+
yield f"\n=== Deploying Trackio Space: {params.trackio_space_name} ==="
|
663 |
+
# deploy_trackio_space.py expects: space_name, token, git_email, git_name, dataset_repo
|
664 |
+
args = [
|
665 |
+
str(PROJECT_ROOT / "scripts/trackio_tonic/deploy_trackio_space.py"),
|
666 |
+
params.trackio_space_name,
|
667 |
+
space_deploy_token,
|
668 |
+
f"{username}@users.noreply.hf.co",
|
669 |
+
username,
|
670 |
+
dataset_repo,
|
671 |
+
]
|
672 |
+
for line in run_command_stream(args, env, cwd=PROJECT_ROOT / "scripts/trackio_tonic"):
|
673 |
+
yield line
|
674 |
+
|
675 |
+
# Training output directory
|
676 |
+
out_dir = PROJECT_ROOT / "outputs" / f"{params.experiment_name}_{datetime.now().strftime('%Y%m%d_%H%M%S')}"
|
677 |
+
out_dir.mkdir(parents=True, exist_ok=True)
|
678 |
+
yield f"\nOutput directory: {out_dir}"
|
679 |
+
|
680 |
+
# Scheduler overrides (GPT-OSS only)
|
681 |
+
if params.model_family == "GPT-OSS" and params.scheduler_override:
|
682 |
+
env["GPT_OSS_SCHEDULER"] = params.scheduler_override
|
683 |
+
if params.min_lr is not None:
|
684 |
+
env["GPT_OSS_MIN_LR"] = str(params.min_lr)
|
685 |
+
if params.min_lr_rate is not None:
|
686 |
+
env["GPT_OSS_MIN_LR_RATE"] = str(params.min_lr_rate)
|
687 |
+
|
688 |
+
# Start training
|
689 |
+
yield f"\n=== Starting Training ({params.model_family}) ==="
|
690 |
+
if params.model_family == "GPT-OSS":
|
691 |
+
args = [
|
692 |
+
str(PROJECT_ROOT / "scripts/training/train_gpt_oss.py"),
|
693 |
+
"--config", str(config_file),
|
694 |
+
"--experiment-name", params.experiment_name,
|
695 |
+
"--output-dir", str(out_dir),
|
696 |
+
"--trackio-url", trackio_url or "",
|
697 |
+
"--trainer-type", params.trainer_type.lower(),
|
698 |
+
]
|
699 |
+
else:
|
700 |
+
args = [
|
701 |
+
str(PROJECT_ROOT / "scripts/training/train.py"),
|
702 |
+
"--config", str(config_file),
|
703 |
+
"--experiment-name", params.experiment_name,
|
704 |
+
"--output-dir", str(out_dir),
|
705 |
+
"--trackio-url", trackio_url or "",
|
706 |
+
"--trainer-type", params.trainer_type.lower(),
|
707 |
+
]
|
708 |
+
|
709 |
+
# Stream training logs
|
710 |
+
train_failed = False
|
711 |
+
for line in run_command_stream(args, env):
|
712 |
+
yield line
|
713 |
+
if line.strip().startswith("[exit_code=") and not line.strip().endswith("[exit_code=0]"):
|
714 |
+
train_failed = True
|
715 |
+
if train_failed:
|
716 |
+
yield "❌ Training failed. Aborting remaining steps."
|
717 |
+
return
|
718 |
+
|
719 |
+
# Push to Hub
|
720 |
+
if params.push_to_hub:
|
721 |
+
yield "\n=== Pushing Model to Hugging Face Hub ==="
|
722 |
+
repo_name = f"{username}/{params.repo_short}"
|
723 |
+
if params.model_family == "GPT-OSS":
|
724 |
+
push_args = [
|
725 |
+
str(PROJECT_ROOT / "scripts/model_tonic/push_gpt_oss_to_huggingface.py"),
|
726 |
+
str(out_dir),
|
727 |
+
repo_name,
|
728 |
+
"--token", write_token,
|
729 |
+
"--trackio-url", trackio_url or "",
|
730 |
+
"--experiment-name", params.experiment_name,
|
731 |
+
"--dataset-repo", dataset_repo,
|
732 |
+
"--author-name", params.author_name or username,
|
733 |
+
"--model-description", params.model_description,
|
734 |
+
"--training-config-type", params.config_choice,
|
735 |
+
"--model-name", base_model,
|
736 |
+
]
|
737 |
+
if dataset_name:
|
738 |
+
push_args += ["--dataset-name", str(dataset_name)]
|
739 |
+
if batch_size is not None:
|
740 |
+
push_args += ["--batch-size", str(batch_size)]
|
741 |
+
if learning_rate is not None:
|
742 |
+
push_args += ["--learning-rate", str(learning_rate)]
|
743 |
+
if max_seq_length is not None:
|
744 |
+
push_args += ["--max-seq-length", str(max_seq_length)]
|
745 |
+
push_args += ["--trainer-type", params.trainer_type]
|
746 |
+
else:
|
747 |
+
push_args = [
|
748 |
+
str(PROJECT_ROOT / "scripts/model_tonic/push_to_huggingface.py"),
|
749 |
+
str(out_dir),
|
750 |
+
repo_name,
|
751 |
+
"--token", write_token,
|
752 |
+
"--trackio-url", trackio_url or "",
|
753 |
+
"--experiment-name", params.experiment_name,
|
754 |
+
"--dataset-repo", dataset_repo,
|
755 |
+
"--author-name", params.author_name or username,
|
756 |
+
"--model-description", params.model_description,
|
757 |
+
"--training-config-type", params.config_choice,
|
758 |
+
"--model-name", base_model,
|
759 |
+
]
|
760 |
+
if dataset_name:
|
761 |
+
push_args += ["--dataset-name", str(dataset_name)]
|
762 |
+
if batch_size is not None:
|
763 |
+
push_args += ["--batch-size", str(batch_size)]
|
764 |
+
if learning_rate is not None:
|
765 |
+
push_args += ["--learning-rate", str(learning_rate)]
|
766 |
+
if max_seq_length is not None:
|
767 |
+
push_args += ["--max-seq-length", str(max_seq_length)]
|
768 |
+
push_args += ["--trainer-type", params.trainer_type]
|
769 |
+
|
770 |
+
for line in run_command_stream(push_args, env):
|
771 |
+
yield line
|
772 |
+
|
773 |
+
# Switch Space token to read-only (security)
|
774 |
+
if params.switch_to_read_after and params.monitoring_mode in ("both", "trackio") and params.trackio_space_name and read_token:
|
775 |
+
yield "\n=== Switching Trackio Space HF_TOKEN to READ token ==="
|
776 |
+
space_id = f"{username}/{params.trackio_space_name}"
|
777 |
+
sw_args = [
|
778 |
+
str(PROJECT_ROOT / "scripts/trackio_tonic/switch_to_read_token.py"),
|
779 |
+
space_id,
|
780 |
+
read_token,
|
781 |
+
write_token,
|
782 |
+
]
|
783 |
+
for line in run_command_stream(sw_args, env, cwd=PROJECT_ROOT / "scripts/trackio_tonic"):
|
784 |
+
yield line
|
785 |
+
elif params.switch_to_read_after and not read_token:
|
786 |
+
yield "⚠️ HF_READ_TOKEN not set; skipping token switch."
|
787 |
+
|
788 |
+
# Final summary
|
789 |
+
yield "\n🎉 Pipeline completed."
|
790 |
+
if params.monitoring_mode != "none" and trackio_url:
|
791 |
+
yield f"Trackio: {trackio_url}"
|
792 |
+
yield f"Model repo (if pushed): https://huggingface.co/{username}/{params.repo_short}"
|
793 |
+
yield f"Outputs: {out_dir}"
|
794 |
+
|
795 |
+
|
796 |
+
# --------------------------------------------------------------------------------------
|
797 |
+
# Gradio UI
|
798 |
+
# --------------------------------------------------------------------------------------
|
799 |
+
|
800 |
+
MODEL_FAMILIES = ["SmolLM3", "GPT-OSS"]
|
801 |
+
TRAINER_CHOICES = ["SFT", "DPO"]
|
802 |
+
MONITORING_CHOICES = ["both", "trackio", "dataset", "none"]
|
803 |
+
SCHEDULER_CHOICES = [None, "linear", "cosine", "cosine_with_min_lr", "constant"]
|
804 |
+
|
805 |
+
|
806 |
+
def ui_defaults(family: str) -> Tuple[str, str, str, str]:
|
807 |
+
exp, repo_short = make_defaults(family)
|
808 |
+
default_desc = (
|
809 |
+
"A fine-tuned GPT-OSS-20B model optimized for multilingual reasoning and instruction following."
|
810 |
+
if family == "GPT-OSS"
|
811 |
+
else "A fine-tuned SmolLM3-3B model optimized for instruction following and French language tasks."
|
812 |
+
)
|
813 |
+
trackio_space_name = f"trackio-monitoring-{datetime.now().strftime('%Y%m%d')}"
|
814 |
+
return exp, repo_short, default_desc, trackio_space_name
|
815 |
+
|
816 |
+
|
817 |
+
def on_family_change(family: str) -> Tuple[list[str], str, str, str, str]:
|
818 |
+
confs = list(get_config_map(family).keys())
|
819 |
+
exp, repo_short, desc, space = ui_defaults(family)
|
820 |
+
return confs, confs[0] if confs else "", exp, repo_short, desc
|
821 |
+
|
822 |
+
|
823 |
+
def start_pipeline(
|
824 |
+
model_family: str,
|
825 |
+
config_choice: str,
|
826 |
+
trainer_type: str,
|
827 |
+
monitoring_mode: str,
|
828 |
+
experiment_name: str,
|
829 |
+
repo_short: str,
|
830 |
+
author_name: str,
|
831 |
+
model_description: str,
|
832 |
+
trackio_space_name: str,
|
833 |
+
deploy_trackio_space: bool,
|
834 |
+
create_dataset_repo: bool,
|
835 |
+
push_to_hub: bool,
|
836 |
+
switch_to_read_after: bool,
|
837 |
+
scheduler_override: Optional[str],
|
838 |
+
min_lr: Optional[float],
|
839 |
+
min_lr_rate: Optional[float],
|
840 |
+
) -> Generator[str, None, None]:
|
841 |
+
try:
|
842 |
+
params = PipelineInputs(
|
843 |
+
model_family=model_family,
|
844 |
+
config_choice=config_choice,
|
845 |
+
trainer_type=trainer_type,
|
846 |
+
monitoring_mode=monitoring_mode,
|
847 |
+
experiment_name=experiment_name,
|
848 |
+
repo_short=repo_short,
|
849 |
+
author_name=author_name,
|
850 |
+
model_description=model_description,
|
851 |
+
trackio_space_name=trackio_space_name or None,
|
852 |
+
deploy_trackio_space=deploy_trackio_space,
|
853 |
+
create_dataset_repo=create_dataset_repo,
|
854 |
+
push_to_hub=push_to_hub,
|
855 |
+
switch_to_read_after=switch_to_read_after,
|
856 |
+
scheduler_override=(scheduler_override or None),
|
857 |
+
min_lr=min_lr,
|
858 |
+
min_lr_rate=min_lr_rate,
|
859 |
+
)
|
860 |
+
|
861 |
+
# Show token presence
|
862 |
+
write_token = os.environ.get("HF_WRITE_TOKEN") or os.environ.get("HF_TOKEN")
|
863 |
+
read_token = os.environ.get("HF_READ_TOKEN")
|
864 |
+
yield f"HF_WRITE_TOKEN: {mask_token(write_token)}"
|
865 |
+
yield f"HF_READ_TOKEN: {mask_token(read_token)}"
|
866 |
+
|
867 |
+
# Run the orchestrated pipeline
|
868 |
+
for line in run_pipeline(params):
|
869 |
+
yield line
|
870 |
+
# Small delay for smoother streaming
|
871 |
+
time.sleep(0.01)
|
872 |
+
except Exception as e:
|
873 |
+
yield f"❌ Error: {e}"
|
874 |
+
tb = traceback.format_exc(limit=2)
|
875 |
+
yield tb
|
876 |
+
|
877 |
+
|
878 |
+
with gr.Blocks(title="SmolLM3 / GPT-OSS Fine-tuning Pipeline") as demo:
|
879 |
+
# GPU/driver detection banner
|
880 |
+
has_gpu, gpu_msg = detect_nvidia_driver()
|
881 |
+
if has_gpu:
|
882 |
+
gr.Markdown(f"""
|
883 |
+
**SmolLM3 / GPT-OSS Fine-tuning Pipeline**
|
884 |
+
- {gpu_msg} — training is available on this runtime.
|
885 |
+
- Reads tokens from environment: `HF_WRITE_TOKEN` (required), `HF_READ_TOKEN` (optional)
|
886 |
+
- Select a config and run training; optionally deploy Trackio and push to Hub
|
887 |
+
""")
|
888 |
+
else:
|
889 |
+
gr.Markdown(f"""
|
890 |
+
**SmolLM3 / GPT-OSS Fine-tuning Pipeline**
|
891 |
+
- {duplicate_space_hint()}
|
892 |
+
- Reads tokens from environment: `HF_WRITE_TOKEN` (required), `HF_READ_TOKEN` (optional)
|
893 |
+
- You can still configure and push, but training requires a GPU runtime.
|
894 |
+
""")
|
895 |
+
|
896 |
+
with gr.Row():
|
897 |
+
model_family = gr.Dropdown(choices=MODEL_FAMILIES, value="SmolLM3", label="Model family")
|
898 |
+
trainer_type = gr.Radio(choices=TRAINER_CHOICES, value="SFT", label="Trainer type")
|
899 |
+
monitoring_mode = gr.Dropdown(choices=MONITORING_CHOICES, value="both", label="Monitoring mode")
|
900 |
+
|
901 |
+
config_choice = gr.Dropdown(choices=list(get_config_map("SmolLM3").keys()), value="Basic Training", label="Training configuration")
|
902 |
+
|
903 |
+
exp_default, repo_default, desc_default, trackio_space_default = ui_defaults("SmolLM3")
|
904 |
+
with gr.Row():
|
905 |
+
experiment_name = gr.Textbox(value=exp_default, label="Experiment name")
|
906 |
+
repo_short = gr.Textbox(value=repo_default, label="Model repo (short name)")
|
907 |
+
|
908 |
+
with gr.Row():
|
909 |
+
author_name = gr.Textbox(value=os.environ.get("HF_USERNAME", ""), label="Author name")
|
910 |
+
model_description = gr.Textbox(value=desc_default, label="Model description")
|
911 |
+
|
912 |
+
with gr.Row():
|
913 |
+
trackio_space_name = gr.Textbox(value=trackio_space_default, label="Trackio Space name (used when monitoring != none)")
|
914 |
+
deploy_trackio_space = gr.Checkbox(value=True, label="Deploy Trackio Space")
|
915 |
+
create_dataset_repo = gr.Checkbox(value=True, label="Create/ensure HF Dataset repo")
|
916 |
+
|
917 |
+
with gr.Row():
|
918 |
+
push_to_hub = gr.Checkbox(value=True, label="Push model to Hugging Face Hub")
|
919 |
+
switch_to_read_after = gr.Checkbox(value=True, label="Switch Space token to READ after training")
|
920 |
+
|
921 |
+
with gr.Tabs():
|
922 |
+
with gr.Tab("Run"):
|
923 |
+
with gr.Row():
|
924 |
+
model_family = gr.Dropdown(choices=MODEL_FAMILIES, value="SmolLM3", label="Model family")
|
925 |
+
trainer_type = gr.Radio(choices=TRAINER_CHOICES, value="SFT", label="Trainer type")
|
926 |
+
monitoring_mode = gr.Dropdown(choices=MONITORING_CHOICES, value="both", label="Monitoring mode")
|
927 |
+
|
928 |
+
config_choice = gr.Dropdown(choices=list(get_config_map("SmolLM3").keys()), value="Basic Training", label="Training configuration")
|
929 |
+
|
930 |
+
exp_default, repo_default, desc_default, trackio_space_default = ui_defaults("SmolLM3")
|
931 |
+
with gr.Row():
|
932 |
+
experiment_name = gr.Textbox(value=exp_default, label="Experiment name")
|
933 |
+
repo_short = gr.Textbox(value=repo_default, label="Model repo (short name)")
|
934 |
+
|
935 |
+
with gr.Row():
|
936 |
+
author_name = gr.Textbox(value=os.environ.get("HF_USERNAME", ""), label="Author name")
|
937 |
+
model_description = gr.Textbox(value=desc_default, label="Model description")
|
938 |
+
|
939 |
+
with gr.Row():
|
940 |
+
trackio_space_name = gr.Textbox(value=trackio_space_default, label="Trackio Space name (used when monitoring != none)")
|
941 |
+
deploy_trackio_space = gr.Checkbox(value=True, label="Deploy Trackio Space")
|
942 |
+
create_dataset_repo = gr.Checkbox(value=True, label="Create/ensure HF Dataset repo")
|
943 |
+
|
944 |
+
with gr.Row():
|
945 |
+
push_to_hub = gr.Checkbox(value=True, label="Push model to Hugging Face Hub")
|
946 |
+
switch_to_read_after = gr.Checkbox(value=True, label="Switch Space token to READ after training")
|
947 |
+
|
948 |
+
gr.Markdown("### Medical SFT (GPT-OSS o1)")
|
949 |
+
gr.Markdown("Configure GPT-OSS Medical o1 SFT (FreedomIntelligence/medical-o1-reasoning-SFT)")
|
950 |
+
med_dataset_config = gr.Dropdown(choices=["en", "en_mix", "zh", "zh_mix"], value="en", label="Dataset config")
|
951 |
+
med_system = gr.Textbox(value="You are GPT-Tonic, a large language model trained by TonicAI.", label="System message", lines=2)
|
952 |
+
med_developer = gr.Textbox(value="You are are GPT-Tonic, an intelligent assistant that always answers health-related queries scientifically.", label="Developer message", lines=3)
|
953 |
+
with gr.Row():
|
954 |
+
med_epochs = gr.Number(value=2.0, precision=2, label="Epochs")
|
955 |
+
med_bs = gr.Number(value=4, precision=0, label="Batch size")
|
956 |
+
med_gas = gr.Number(value=4, precision=0, label="Grad accumulation")
|
957 |
+
med_lr = gr.Number(value=2e-4, precision=6, label="Learning rate")
|
958 |
+
med_msl = gr.Number(value=2048, precision=0, label="Max seq length")
|
959 |
+
med_generate = gr.Button("Generate Medical Config")
|
960 |
+
med_status = gr.Textbox(label="Generated config path", interactive=False)
|
961 |
+
|
962 |
+
logs = gr.Textbox(value="", label="Logs", lines=20)
|
963 |
+
start_btn = gr.Button("Run Pipeline")
|
964 |
+
|
965 |
+
with gr.Tab("Advanced Config"):
|
966 |
+
with gr.Accordion("GPT-OSS Scheduler Overrides", open=False):
|
967 |
+
scheduler_override = gr.Dropdown(choices=[c for c in SCHEDULER_CHOICES if c is not None], value=None, allow_custom_value=True, label="Scheduler override")
|
968 |
+
min_lr = gr.Number(value=None, precision=6, label="min_lr (when cosine_with_min_lr)")
|
969 |
+
min_lr_rate = gr.Number(value=None, precision=6, label="min_lr_rate (when cosine_with_min_lr)")
|
970 |
+
|
971 |
+
gr.Markdown("### GPT-OSS Custom Dataset")
|
972 |
+
with gr.Row():
|
973 |
+
cds_dataset = gr.Textbox(value="legmlai/openhermes-fr", label="Dataset name")
|
974 |
+
cds_split = gr.Textbox(value="train", label="Split")
|
975 |
+
cds_format = gr.Dropdown(choices=["openhermes_fr", "messages", "text", "medical_o1_sft", "custom", "preference"], value="openhermes_fr", label="Format")
|
976 |
+
with gr.Row():
|
977 |
+
cds_input = gr.Textbox(value="prompt", label="Input field")
|
978 |
+
cds_target = gr.Textbox(value="accepted_completion", label="Target field (optional, blank for None)")
|
979 |
+
with gr.Row():
|
980 |
+
cds_sys = gr.Textbox(value="", label="System message (optional)")
|
981 |
+
cds_dev = gr.Textbox(value="", label="Developer message (optional)")
|
982 |
+
with gr.Row():
|
983 |
+
cds_identity = gr.Textbox(value="You are GPT-Tonic, a large language model trained by TonicAI.", label="Model identity (chat_template_kwargs.model_identity)")
|
984 |
+
with gr.Row():
|
985 |
+
cds_max_samples = gr.Number(value=None, precision=0, label="Max samples (optional)")
|
986 |
+
cds_min_len = gr.Number(value=10, precision=0, label="Min length")
|
987 |
+
cds_max_len = gr.Number(value=None, precision=0, label="Max length (optional)")
|
988 |
+
gr.Markdown("#### Training Hyperparameters")
|
989 |
+
with gr.Row():
|
990 |
+
cds_epochs = gr.Number(value=1.0, precision=2, label="Epochs")
|
991 |
+
cds_bs = gr.Number(value=4, precision=0, label="Batch size")
|
992 |
+
cds_gas = gr.Number(value=4, precision=0, label="Grad accumulation")
|
993 |
+
cds_lr = gr.Number(value=2e-4, precision=6, label="Learning rate")
|
994 |
+
cds_minlr = gr.Number(value=2e-5, precision=6, label="Min LR")
|
995 |
+
with gr.Row():
|
996 |
+
cds_wd = gr.Number(value=0.01, precision=6, label="Weight decay")
|
997 |
+
cds_warm = gr.Number(value=0.03, precision=6, label="Warmup ratio")
|
998 |
+
cds_msl = gr.Number(value=2048, precision=0, label="Max seq length")
|
999 |
+
gr.Markdown("#### LoRA / Precision / Quantization / Perf")
|
1000 |
+
with gr.Row():
|
1001 |
+
cds_lora_r = gr.Number(value=16, precision=0, label="LoRA r")
|
1002 |
+
cds_lora_alpha = gr.Number(value=32, precision=0, label="LoRA alpha")
|
1003 |
+
cds_lora_dropout = gr.Number(value=0.05, precision=4, label="LoRA dropout")
|
1004 |
+
with gr.Row():
|
1005 |
+
cds_precision = gr.Dropdown(choices=["bf16", "fp16", "fp32"], value="bf16", label="Mixed precision")
|
1006 |
+
cds_workers = gr.Number(value=4, precision=0, label="Data workers")
|
1007 |
+
cds_quant = gr.Dropdown(choices=["mxfp4", "bnb4", "none"], value="mxfp4", label="Quantization")
|
1008 |
+
with gr.Row():
|
1009 |
+
cds_mgn = gr.Number(value=1.0, precision=4, label="Max grad norm")
|
1010 |
+
cds_log_steps = gr.Number(value=10, precision=0, label="Logging steps")
|
1011 |
+
cds_eval_steps = gr.Number(value=100, precision=0, label="Eval steps")
|
1012 |
+
cds_save_steps = gr.Number(value=500, precision=0, label="Save steps")
|
1013 |
+
cds_generate = gr.Button("Generate GPT-OSS Custom Config")
|
1014 |
+
cds_status = gr.Textbox(label="Generated config path", interactive=False)
|
1015 |
+
|
1016 |
+
gr.Markdown("### SmolLM3 Custom Configuration")
|
1017 |
+
with gr.Row():
|
1018 |
+
sm_model = gr.Textbox(value="HuggingFaceTB/SmolLM3-3B", label="Model name")
|
1019 |
+
sm_dataset = gr.Textbox(value="legmlai/openhermes-fr", label="Dataset (optional; leave blank for local)")
|
1020 |
+
with gr.Row():
|
1021 |
+
sm_msl = gr.Number(value=4096, precision=0, label="Max seq length")
|
1022 |
+
sm_bs = gr.Number(value=2, precision=0, label="Batch size")
|
1023 |
+
sm_gas = gr.Number(value=8, precision=0, label="Grad accumulation")
|
1024 |
+
sm_lr = gr.Number(value=5e-6, precision=8, label="Learning rate")
|
1025 |
+
with gr.Row():
|
1026 |
+
sm_save = gr.Number(value=500, precision=0, label="Save steps")
|
1027 |
+
sm_eval = gr.Number(value=100, precision=0, label="Eval steps")
|
1028 |
+
sm_log = gr.Number(value=10, precision=0, label="Logging steps")
|
1029 |
+
with gr.Row():
|
1030 |
+
sm_filter = gr.Checkbox(value=False, label="Filter bad entries")
|
1031 |
+
sm_in = gr.Textbox(value="prompt", label="Input field")
|
1032 |
+
sm_out = gr.Textbox(value="accepted_completion", label="Target field")
|
1033 |
+
with gr.Row():
|
1034 |
+
sm_sample = gr.Number(value=None, precision=0, label="Sample size (optional)")
|
1035 |
+
sm_seed = gr.Number(value=42, precision=0, label="Sample seed")
|
1036 |
+
sm_trainer = gr.Dropdown(choices=["SFT", "DPO"], value="SFT", label="Trainer type")
|
1037 |
+
sm_generate = gr.Button("Generate SmolLM3 Custom Config")
|
1038 |
+
sm_status = gr.Textbox(label="Generated config path", interactive=False)
|
1039 |
+
|
1040 |
+
logs = gr.Textbox(value="", label="Logs", lines=20)
|
1041 |
+
|
1042 |
+
start_btn = gr.Button("Run Pipeline")
|
1043 |
+
|
1044 |
+
# Events
|
1045 |
+
model_family.change(on_family_change, inputs=model_family, outputs=[config_choice, config_choice, experiment_name, repo_short, model_description])
|
1046 |
+
|
1047 |
+
# Generate config handlers
|
1048 |
+
med_generate.click(
|
1049 |
+
lambda dc, sysm, devm, ep, bs, gas, lr, msl: str(
|
1050 |
+
generate_medical_o1_config_file(
|
1051 |
+
dataset_config=dc,
|
1052 |
+
system_message=sysm,
|
1053 |
+
developer_message=devm,
|
1054 |
+
num_train_epochs=float(ep or 2.0),
|
1055 |
+
batch_size=int(bs or 4),
|
1056 |
+
gradient_accumulation_steps=int(gas or 4),
|
1057 |
+
learning_rate=float(lr or 2e-4),
|
1058 |
+
max_seq_length=int(msl or 2048),
|
1059 |
+
)
|
1060 |
+
),
|
1061 |
+
inputs=[med_dataset_config, med_system, med_developer, med_epochs, med_bs, med_gas, med_lr, med_msl],
|
1062 |
+
outputs=[med_status],
|
1063 |
+
)
|
1064 |
+
|
1065 |
+
cds_generate.click(
|
1066 |
+
lambda dname, dsplit, dformat, ifld, tfld, sm, dm, ident, ms, minl, maxl, ep, bs, gas, lr, minlr, wd, warm, msl, lr_, la, ld, prec, nw, q, mgn, logst, evst, savst: str(
|
1067 |
+
generate_gpt_oss_custom_config_file(
|
1068 |
+
dataset_name=dname,
|
1069 |
+
dataset_split=dsplit,
|
1070 |
+
dataset_format=dformat,
|
1071 |
+
input_field=ifld,
|
1072 |
+
target_field=(tfld or None),
|
1073 |
+
system_message=sm,
|
1074 |
+
developer_message=dm,
|
1075 |
+
model_identity=ident,
|
1076 |
+
max_samples=(int(ms) if ms is not None else None),
|
1077 |
+
min_length=int(minl or 10),
|
1078 |
+
max_length=(int(maxl) if maxl is not None else None),
|
1079 |
+
num_train_epochs=float(ep or 1.0),
|
1080 |
+
batch_size=int(bs or 4),
|
1081 |
+
gradient_accumulation_steps=int(gas or 4),
|
1082 |
+
learning_rate=float(lr or 2e-4),
|
1083 |
+
min_lr=float(minlr or 2e-5),
|
1084 |
+
weight_decay=float(wd or 0.01),
|
1085 |
+
warmup_ratio=float(warm or 0.03),
|
1086 |
+
max_seq_length=int(msl or 2048),
|
1087 |
+
lora_r=int(lr_),
|
1088 |
+
lora_alpha=int(la),
|
1089 |
+
lora_dropout=float(ld),
|
1090 |
+
mixed_precision=prec,
|
1091 |
+
num_workers=int(nw or 4),
|
1092 |
+
quantization_type=q,
|
1093 |
+
max_grad_norm=float(mgn or 1.0),
|
1094 |
+
logging_steps=int(logst or 10),
|
1095 |
+
eval_steps=int(evst or 100),
|
1096 |
+
save_steps=int(savst or 500),
|
1097 |
+
)
|
1098 |
+
),
|
1099 |
+
inputs=[
|
1100 |
+
cds_dataset, cds_split, cds_format, cds_input, cds_target, cds_sys, cds_dev, cds_identity,
|
1101 |
+
cds_max_samples, cds_min_len, cds_max_len, cds_epochs, cds_bs, cds_gas, cds_lr, cds_minlr, cds_wd,
|
1102 |
+
cds_warm, cds_msl, cds_lora_r, cds_lora_alpha, cds_lora_dropout, cds_precision, cds_workers, cds_quant,
|
1103 |
+
cds_mgn, cds_log_steps, cds_eval_steps, cds_save_steps
|
1104 |
+
],
|
1105 |
+
outputs=[cds_status],
|
1106 |
+
)
|
1107 |
+
|
1108 |
+
sm_generate.click(
|
1109 |
+
lambda mn, dn, msl, bs, gas, lr, sst, est, lst, fbe, ifld, tfld, ss, seed, tt: str(
|
1110 |
+
generate_smollm3_custom_config_file(
|
1111 |
+
model_name=mn,
|
1112 |
+
dataset_name=(dn or None),
|
1113 |
+
max_seq_length=int(msl or 4096),
|
1114 |
+
batch_size=int(bs or 2),
|
1115 |
+
gradient_accumulation_steps=int(gas or 8),
|
1116 |
+
learning_rate=float(lr or 5e-6),
|
1117 |
+
save_steps=int(sst or 500),
|
1118 |
+
eval_steps=int(est or 100),
|
1119 |
+
logging_steps=int(lst or 10),
|
1120 |
+
filter_bad_entries=bool(fbe),
|
1121 |
+
input_field=ifld,
|
1122 |
+
target_field=tfld,
|
1123 |
+
sample_size=(int(ss) if ss is not None else None),
|
1124 |
+
sample_seed=int(seed or 42),
|
1125 |
+
trainer_type=tt,
|
1126 |
+
)
|
1127 |
+
),
|
1128 |
+
inputs=[
|
1129 |
+
sm_model, sm_dataset, sm_msl, sm_bs, sm_gas, sm_lr, sm_save, sm_eval, sm_log,
|
1130 |
+
sm_filter, sm_in, sm_out, sm_sample, sm_seed, sm_trainer,
|
1131 |
+
],
|
1132 |
+
outputs=[sm_status],
|
1133 |
+
)
|
1134 |
+
|
1135 |
+
start_btn.click(
|
1136 |
+
start_pipeline,
|
1137 |
+
inputs=[
|
1138 |
+
model_family,
|
1139 |
+
config_choice,
|
1140 |
+
trainer_type,
|
1141 |
+
monitoring_mode,
|
1142 |
+
experiment_name,
|
1143 |
+
repo_short,
|
1144 |
+
author_name,
|
1145 |
+
model_description,
|
1146 |
+
trackio_space_name,
|
1147 |
+
deploy_trackio_space,
|
1148 |
+
create_dataset_repo,
|
1149 |
+
push_to_hub,
|
1150 |
+
switch_to_read_after,
|
1151 |
+
scheduler_override,
|
1152 |
+
min_lr,
|
1153 |
+
min_lr_rate,
|
1154 |
+
],
|
1155 |
+
outputs=[logs],
|
1156 |
+
)
|
1157 |
+
|
1158 |
+
|
1159 |
+
if __name__ == "__main__":
|
1160 |
+
# Optional: allow setting server parameters via env
|
1161 |
+
server_port = int(os.environ.get("INTERFACE_PORT", "7860"))
|
1162 |
+
server_name = os.environ.get("INTERFACE_HOST", "0.0.0.0")
|
1163 |
+
demo.queue().launch(server_name=server_name, server_port=server_port)
|
1164 |
+
|
1165 |
+
|
launch.sh
CHANGED
@@ -478,6 +478,7 @@ get_custom_dataset_config() {
|
|
478 |
print_info "💬 Harmony Context (optional)"
|
479 |
get_input "System message" "You are GPT-Tonic, a large language model trained by TonicAI." SYSTEM_MESSAGE
|
480 |
get_input "Developer message" "You are an intelligent assistant that can answer customer service queries" DEVELOPER_MESSAGE
|
|
|
481 |
|
482 |
# Dataset Filtering Options
|
483 |
echo ""
|
@@ -601,6 +602,27 @@ update_enhanced_gpt_oss_config() {
|
|
601 |
;;
|
602 |
esac
|
603 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
604 |
# Create enhanced config file with all user choices
|
605 |
cat > "$CONFIG_FILE" << EOF
|
606 |
"""
|
@@ -626,11 +648,22 @@ config = GPTOSSEnhancedCustomConfig(
|
|
626 |
min_length=$MIN_LENGTH,
|
627 |
max_length=$(if [ -n "$MAX_LENGTH" ]; then echo "$MAX_LENGTH"; else echo "None"; fi),
|
628 |
|
629 |
-
#
|
630 |
-
|
631 |
-
|
|
|
|
|
632 |
use_harmony_format=True,
|
633 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
634 |
# Medical o1 SFT mapping (ignored unless dataset_format == 'medical_o1_sft')
|
635 |
question_field=$(if [ -n "$MED_Q_FIELD" ]; then echo "\"$MED_Q_FIELD\""; else echo "\"Question\""; fi),
|
636 |
reasoning_field=$(if [ -n "$MED_REASON_FIELD" ]; then echo "\"$MED_REASON_FIELD\""; else echo "\"Complex_CoT\""; fi),
|
@@ -792,7 +825,8 @@ config = SmolLM3Config(
|
|
792 |
experiment_name="$EXPERIMENT_NAME",
|
793 |
|
794 |
# HF Datasets configuration
|
795 |
-
dataset_repo="$TRACKIO_DATASET_REPO"
|
|
|
796 |
)
|
797 |
EOF
|
798 |
}
|
@@ -881,6 +915,35 @@ fi
|
|
881 |
|
882 |
get_training_config "$TRAINING_CONFIG_TYPE"
|
883 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
884 |
# 2.3 Set a family-specific default model description for the model card
|
885 |
if [ "$MODEL_FAMILY" = "GPT-OSS" ]; then
|
886 |
DEFAULT_MODEL_DESCRIPTION="A fine-tuned GPT-OSS-20B model optimized for multilingual reasoning and instruction following."
|
@@ -999,12 +1062,16 @@ get_input "Save steps" "500" SAVE_STEPS
|
|
999 |
get_input "Evaluation steps" "100" EVAL_STEPS
|
1000 |
get_input "Logging steps" "10" LOGGING_STEPS
|
1001 |
|
1002 |
-
# Step 5: Trackio Space configuration
|
1003 |
-
|
1004 |
-
|
1005 |
-
|
1006 |
-
get_input "Trackio Space name" "trackio-monitoring-$(date +%Y%m%d)" TRACKIO_SPACE_NAME
|
1007 |
-
TRACKIO_URL="https://huggingface.co/spaces/$HF_USERNAME/$TRACKIO_SPACE_NAME"
|
|
|
|
|
|
|
|
|
1008 |
|
1009 |
# Step 6: Confirm configuration
|
1010 |
print_step "Step 6: Configuration Summary"
|
@@ -1029,6 +1096,7 @@ echo " Model Repo: $REPO_NAME (auto-generated)"
|
|
1029 |
echo " Author: $AUTHOR_NAME"
|
1030 |
echo " Trackio Space: $TRACKIO_URL"
|
1031 |
echo " HF Dataset: $TRACKIO_DATASET_REPO"
|
|
|
1032 |
echo ""
|
1033 |
|
1034 |
read -p "Proceed with this configuration? (y/N): " confirm
|
@@ -1153,57 +1221,62 @@ get_input "Author name for model card" "$HF_USERNAME" AUTHOR_NAME
|
|
1153 |
print_info "Model description will be used in the model card and repository."
|
1154 |
get_input "Model description" "$DEFAULT_MODEL_DESCRIPTION" MODEL_DESCRIPTION
|
1155 |
|
1156 |
-
# Step 9: Deploy Trackio Space (automated)
|
1157 |
-
|
1158 |
-
|
1159 |
-
|
1160 |
-
cd scripts/trackio_tonic
|
1161 |
-
|
1162 |
-
print_info "
|
1163 |
-
print_info "
|
1164 |
-
|
1165 |
-
print_info "
|
1166 |
-
|
1167 |
-
|
1168 |
-
|
1169 |
-
|
1170 |
-
export
|
1171 |
-
|
1172 |
-
|
1173 |
-
|
1174 |
-
|
1175 |
-
print_status "Trackio Space deployed: $TRACKIO_URL"
|
1176 |
-
|
1177 |
-
|
1178 |
-
|
1179 |
-
echo "=================================="
|
1180 |
-
|
1181 |
-
cd ../dataset_tonic
|
1182 |
-
print_info "Setting up HF Dataset with automated features..."
|
1183 |
-
print_info "Username will be auto-detected from token"
|
1184 |
-
print_info "Dataset repository: $TRACKIO_DATASET_REPO"
|
1185 |
-
|
1186 |
-
# Ensure environment variables are available for the script
|
1187 |
-
export HF_TOKEN="$HF_TOKEN"
|
1188 |
-
export HUGGING_FACE_HUB_TOKEN="$HF_TOKEN"
|
1189 |
-
export HF_USERNAME="$HF_USERNAME"
|
1190 |
-
|
1191 |
-
python setup_hf_dataset.py "$HF_TOKEN"
|
1192 |
-
|
1193 |
-
# Step 11: Configure Trackio (automated)
|
1194 |
-
print_step "Step 11: Configuring Trackio"
|
1195 |
-
echo "================================="
|
1196 |
-
|
1197 |
-
cd ../trackio_tonic
|
1198 |
-
print_info "Configuring Trackio ..."
|
1199 |
-
print_info "Username will be auto-detected from token"
|
1200 |
|
1201 |
-
|
1202 |
-
|
1203 |
-
|
1204 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1205 |
|
1206 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1207 |
|
1208 |
# Step 12: Training Configuration
|
1209 |
print_step "Step 12: Training Configuration"
|
@@ -1256,11 +1329,12 @@ print_info "Trackio: $TRACKIO_URL"
|
|
1256 |
# Ensure environment variables are available for training
|
1257 |
export HF_WRITE_TOKEN="$HF_WRITE_TOKEN"
|
1258 |
export HF_READ_TOKEN="$HF_READ_TOKEN"
|
1259 |
-
export HF_TOKEN="$
|
1260 |
-
export HUGGING_FACE_HUB_TOKEN="$
|
1261 |
export HF_USERNAME="$HF_USERNAME"
|
1262 |
export TRACKIO_DATASET_REPO="$TRACKIO_DATASET_REPO"
|
1263 |
export OUTPUT_DIR="$OUTPUT_DIR"
|
|
|
1264 |
|
1265 |
# Run the appropriate training script based on model type
|
1266 |
if [[ "$MODEL_NAME" == *"gpt-oss"* ]]; then
|
@@ -1334,32 +1408,31 @@ else
|
|
1334 |
--trainer-type "$TRAINER_TYPE"
|
1335 |
fi
|
1336 |
|
1337 |
-
# Step 16.5: Switch Trackio Space to Read Token (Security)
|
1338 |
-
|
1339 |
-
|
1340 |
-
|
1341 |
-
print_info "Switching Trackio Space HF_TOKEN from write token to read token for security..."
|
1342 |
-
print_info "This ensures the space can only read datasets, not write to repositories"
|
1343 |
-
|
1344 |
-
#
|
1345 |
-
export
|
1346 |
-
export
|
1347 |
-
|
1348 |
-
|
1349 |
-
|
1350 |
-
|
1351 |
-
|
1352 |
-
|
1353 |
-
|
1354 |
-
|
1355 |
-
|
|
|
|
|
1356 |
else
|
1357 |
-
|
1358 |
-
print_info "You can manually switch the token in your Space settings later"
|
1359 |
fi
|
1360 |
|
1361 |
-
cd ../..
|
1362 |
-
|
1363 |
# Step 17: Deploy Demo Space
|
1364 |
print_step "Step 17: Deploying Demo Space"
|
1365 |
echo "=================================="
|
@@ -1387,7 +1460,8 @@ export HF_USERNAME="$HF_USERNAME"
|
|
1387 |
--hf-username "$HF_USERNAME" \
|
1388 |
--model-id "$DEMO_MODEL_ID" \
|
1389 |
--subfolder "$DEMO_SUBFOLDER" \
|
1390 |
-
--space-name "${REPO_SHORT}-demo"
|
|
|
1391 |
|
1392 |
if [ $? -eq 0 ]; then
|
1393 |
DEMO_SPACE_URL="https://huggingface.co/spaces/$HF_USERNAME/${REPO_SHORT}-demo"
|
|
|
478 |
print_info "💬 Harmony Context (optional)"
|
479 |
get_input "System message" "You are GPT-Tonic, a large language model trained by TonicAI." SYSTEM_MESSAGE
|
480 |
get_input "Developer message" "You are an intelligent assistant that can answer customer service queries" DEVELOPER_MESSAGE
|
481 |
+
get_input "Model identity/persona (used in chat_template_kwargs.model_identity)" "You are GPT-Tonic, a large language model trained by TonicAI." MODEL_IDENTITY
|
482 |
|
483 |
# Dataset Filtering Options
|
484 |
echo ""
|
|
|
602 |
;;
|
603 |
esac
|
604 |
|
605 |
+
# Safely serialize free-text fields to valid Python literals
|
606 |
+
SYSTEM_MESSAGE_LITERAL=$(SYSTEM_MESSAGE="$SYSTEM_MESSAGE" python - <<'PY'
|
607 |
+
import json, os
|
608 |
+
v = os.environ.get('SYSTEM_MESSAGE', '')
|
609 |
+
print('None' if not v else json.dumps(v))
|
610 |
+
PY
|
611 |
+
)
|
612 |
+
DEVELOPER_MESSAGE_LITERAL=$(DEVELOPER_MESSAGE="$DEVELOPER_MESSAGE" python - <<'PY'
|
613 |
+
import json, os
|
614 |
+
v = os.environ.get('DEVELOPER_MESSAGE', '')
|
615 |
+
print('None' if not v else json.dumps(v))
|
616 |
+
PY
|
617 |
+
)
|
618 |
+
MODEL_IDENTITY_DEFAULT="You are GPT-Tonic, a large language model trained by TonicAI."
|
619 |
+
MODEL_IDENTITY_LITERAL=$(MODEL_IDENTITY="${MODEL_IDENTITY:-$MODEL_IDENTITY_DEFAULT}" python - <<'PY'
|
620 |
+
import json, os
|
621 |
+
v = os.environ.get('MODEL_IDENTITY', '')
|
622 |
+
print(json.dumps(v))
|
623 |
+
PY
|
624 |
+
)
|
625 |
+
|
626 |
# Create enhanced config file with all user choices
|
627 |
cat > "$CONFIG_FILE" << EOF
|
628 |
"""
|
|
|
648 |
min_length=$MIN_LENGTH,
|
649 |
max_length=$(if [ -n "$MAX_LENGTH" ]; then echo "$MAX_LENGTH"; else echo "None"; fi),
|
650 |
|
651 |
+
# ============================================================================
|
652 |
+
# HARMONY CONFIGURATION
|
653 |
+
# ============================================================================
|
654 |
+
system_message=$SYSTEM_MESSAGE_LITERAL,
|
655 |
+
developer_message=$DEVELOPER_MESSAGE_LITERAL,
|
656 |
use_harmony_format=True,
|
657 |
|
658 |
+
chat_template_kwargs={
|
659 |
+
"add_generation_prompt": True,
|
660 |
+
"tokenize": False,
|
661 |
+
"auto_insert_role": True,
|
662 |
+
"reasoning_effort": "medium",
|
663 |
+
"model_identity": $MODEL_IDENTITY_LITERAL,
|
664 |
+
"builtin_tools": [],
|
665 |
+
},
|
666 |
+
|
667 |
# Medical o1 SFT mapping (ignored unless dataset_format == 'medical_o1_sft')
|
668 |
question_field=$(if [ -n "$MED_Q_FIELD" ]; then echo "\"$MED_Q_FIELD\""; else echo "\"Question\""; fi),
|
669 |
reasoning_field=$(if [ -n "$MED_REASON_FIELD" ]; then echo "\"$MED_REASON_FIELD\""; else echo "\"Complex_CoT\""; fi),
|
|
|
825 |
experiment_name="$EXPERIMENT_NAME",
|
826 |
|
827 |
# HF Datasets configuration
|
828 |
+
dataset_repo="$TRACKIO_DATASET_REPO",
|
829 |
+
monitoring_mode="$MONITORING_MODE",
|
830 |
)
|
831 |
EOF
|
832 |
}
|
|
|
915 |
|
916 |
get_training_config "$TRAINING_CONFIG_TYPE"
|
917 |
|
918 |
+
# Step 2.4: Monitoring mode selection
|
919 |
+
print_step "Step 2.4: Monitoring Mode"
|
920 |
+
echo "=============================="
|
921 |
+
echo "Choose how to log your experiment:"
|
922 |
+
select_option "Select monitoring mode:" \
|
923 |
+
"Both (Trackio + Dataset)" \
|
924 |
+
"Trackio only" \
|
925 |
+
"Dataset only" \
|
926 |
+
"None (local only)" \
|
927 |
+
MONITORING_MODE_OPTION
|
928 |
+
|
929 |
+
case "$MONITORING_MODE_OPTION" in
|
930 |
+
"Both (Trackio + Dataset)") MONITORING_MODE="both" ;;
|
931 |
+
"Trackio only") MONITORING_MODE="trackio" ;;
|
932 |
+
"Dataset only") MONITORING_MODE="dataset" ;;
|
933 |
+
"None (local only)") MONITORING_MODE="none" ;;
|
934 |
+
*) MONITORING_MODE="both" ;;
|
935 |
+
esac
|
936 |
+
|
937 |
+
# Decide which token to use for the Trackio Space secret
|
938 |
+
# - dataset: read-only token (Space only needs to read datasets)
|
939 |
+
# - trackio/both: write token until end of training (Space writes to datasets)
|
940 |
+
# - none: Space is skipped
|
941 |
+
if [ "$MONITORING_MODE" = "dataset" ]; then
|
942 |
+
SPACE_DEPLOY_TOKEN="$HF_READ_TOKEN"
|
943 |
+
else
|
944 |
+
SPACE_DEPLOY_TOKEN="$HF_WRITE_TOKEN"
|
945 |
+
fi
|
946 |
+
|
947 |
# 2.3 Set a family-specific default model description for the model card
|
948 |
if [ "$MODEL_FAMILY" = "GPT-OSS" ]; then
|
949 |
DEFAULT_MODEL_DESCRIPTION="A fine-tuned GPT-OSS-20B model optimized for multilingual reasoning and instruction following."
|
|
|
1062 |
get_input "Evaluation steps" "100" EVAL_STEPS
|
1063 |
get_input "Logging steps" "10" LOGGING_STEPS
|
1064 |
|
1065 |
+
# Step 5: Trackio Space configuration (skip when local-only)
|
1066 |
+
if [ "$MONITORING_MODE" != "none" ]; then
|
1067 |
+
print_step "Step 5: Trackio Space Configuration"
|
1068 |
+
echo "======================================"
|
1069 |
+
get_input "Trackio Space name" "trackio-monitoring-$(date +%Y%m%d)" TRACKIO_SPACE_NAME
|
1070 |
+
TRACKIO_URL="https://huggingface.co/spaces/$HF_USERNAME/$TRACKIO_SPACE_NAME"
|
1071 |
+
else
|
1072 |
+
TRACKIO_SPACE_NAME=""
|
1073 |
+
TRACKIO_URL=""
|
1074 |
+
fi
|
1075 |
|
1076 |
# Step 6: Confirm configuration
|
1077 |
print_step "Step 6: Configuration Summary"
|
|
|
1096 |
echo " Author: $AUTHOR_NAME"
|
1097 |
echo " Trackio Space: $TRACKIO_URL"
|
1098 |
echo " HF Dataset: $TRACKIO_DATASET_REPO"
|
1099 |
+
echo " Monitoring Mode: $MONITORING_MODE"
|
1100 |
echo ""
|
1101 |
|
1102 |
read -p "Proceed with this configuration? (y/N): " confirm
|
|
|
1221 |
print_info "Model description will be used in the model card and repository."
|
1222 |
get_input "Model description" "$DEFAULT_MODEL_DESCRIPTION" MODEL_DESCRIPTION
|
1223 |
|
1224 |
+
# Step 9: Deploy Trackio Space (automated, skipped for local-only)
|
1225 |
+
if [ "$MONITORING_MODE" != "none" ]; then
|
1226 |
+
print_step "Step 9: Deploying Trackio Space"
|
1227 |
+
echo "==================================="
|
1228 |
+
cd scripts/trackio_tonic
|
1229 |
+
print_info "Deploying Trackio Space ..."
|
1230 |
+
print_info "Space name: $TRACKIO_SPACE_NAME"
|
1231 |
+
print_info "Username will be auto-detected from token"
|
1232 |
+
if [ "$MONITORING_MODE" = "dataset" ]; then
|
1233 |
+
print_info "Deploying with READ token (Space will NOT write to datasets)"
|
1234 |
+
else
|
1235 |
+
print_info "Deploying with WRITE token (Space will write to datasets during training)"
|
1236 |
+
fi
|
1237 |
+
# Ensure environment variables are available for the script
|
1238 |
+
export HF_TOKEN="$SPACE_DEPLOY_TOKEN"
|
1239 |
+
export HUGGING_FACE_HUB_TOKEN="$SPACE_DEPLOY_TOKEN"
|
1240 |
+
export HF_USERNAME="$HF_USERNAME"
|
1241 |
+
# Run deployment script with automated features (pass deploy token)
|
1242 |
+
python deploy_trackio_space.py "$TRACKIO_SPACE_NAME" "$SPACE_DEPLOY_TOKEN" "$GIT_EMAIL" "$HF_USERNAME" "$TRACKIO_DATASET_REPO"
|
1243 |
+
print_status "Trackio Space deployed: $TRACKIO_URL"
|
1244 |
+
else
|
1245 |
+
print_info "Skipping Trackio Space deployment (monitoring_mode=$MONITORING_MODE)"
|
1246 |
+
fi
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1247 |
|
1248 |
+
if [ "$MONITORING_MODE" != "none" ]; then
|
1249 |
+
# Step 10: Setup HF Dataset (automated) — required unless local-only
|
1250 |
+
print_step "Step 10: Setting up HF Dataset"
|
1251 |
+
echo "=================================="
|
1252 |
+
cd ../dataset_tonic
|
1253 |
+
print_info "Setting up HF Dataset with automated features..."
|
1254 |
+
print_info "Username will be auto-detected from token"
|
1255 |
+
print_info "Dataset repository: $TRACKIO_DATASET_REPO"
|
1256 |
+
# Ensure environment variables are available for the script
|
1257 |
+
export HF_TOKEN="$HF_WRITE_TOKEN"
|
1258 |
+
export HUGGING_FACE_HUB_TOKEN="$HF_WRITE_TOKEN"
|
1259 |
+
export HF_USERNAME="$HF_USERNAME"
|
1260 |
+
python setup_hf_dataset.py "$HF_TOKEN"
|
1261 |
+
else
|
1262 |
+
print_info "Skipping HF Dataset setup (monitoring_mode=$MONITORING_MODE)"
|
1263 |
+
fi
|
1264 |
|
1265 |
+
# Step 11: Configure Trackio (automated) — skipped for local-only
|
1266 |
+
if [ "$MONITORING_MODE" != "none" ]; then
|
1267 |
+
print_step "Step 11: Configuring Trackio"
|
1268 |
+
echo "================================="
|
1269 |
+
cd ../trackio_tonic
|
1270 |
+
print_info "Configuring Trackio ..."
|
1271 |
+
print_info "Username will be auto-detected from token"
|
1272 |
+
# Ensure environment variables are available for the script
|
1273 |
+
export HF_TOKEN="$SPACE_DEPLOY_TOKEN"
|
1274 |
+
export HUGGING_FACE_HUB_TOKEN="$SPACE_DEPLOY_TOKEN"
|
1275 |
+
export HF_USERNAME="$HF_USERNAME"
|
1276 |
+
python configure_trackio.py
|
1277 |
+
else
|
1278 |
+
print_info "Skipping Trackio configuration (monitoring_mode=$MONITORING_MODE)"
|
1279 |
+
fi
|
1280 |
|
1281 |
# Step 12: Training Configuration
|
1282 |
print_step "Step 12: Training Configuration"
|
|
|
1329 |
# Ensure environment variables are available for training
|
1330 |
export HF_WRITE_TOKEN="$HF_WRITE_TOKEN"
|
1331 |
export HF_READ_TOKEN="$HF_READ_TOKEN"
|
1332 |
+
export HF_TOKEN="$HF_WRITE_TOKEN"
|
1333 |
+
export HUGGING_FACE_HUB_TOKEN="$HF_WRITE_TOKEN"
|
1334 |
export HF_USERNAME="$HF_USERNAME"
|
1335 |
export TRACKIO_DATASET_REPO="$TRACKIO_DATASET_REPO"
|
1336 |
export OUTPUT_DIR="$OUTPUT_DIR"
|
1337 |
+
export MONITORING_MODE="$MONITORING_MODE"
|
1338 |
|
1339 |
# Run the appropriate training script based on model type
|
1340 |
if [[ "$MODEL_NAME" == *"gpt-oss"* ]]; then
|
|
|
1408 |
--trainer-type "$TRAINER_TYPE"
|
1409 |
fi
|
1410 |
|
1411 |
+
# Step 16.5: Switch Trackio Space to Read Token (Security) — only for trackio/both
|
1412 |
+
if [ "$MONITORING_MODE" = "trackio" ] || [ "$MONITORING_MODE" = "both" ]; then
|
1413 |
+
print_step "Step 16.5: Switching to Read Token for Security"
|
1414 |
+
echo "===================================================="
|
1415 |
+
print_info "Switching Trackio Space HF_TOKEN from write token to read token for security..."
|
1416 |
+
print_info "This ensures the space can only read datasets, not write to repositories"
|
1417 |
+
# Ensure environment variables are available for token switch
|
1418 |
+
export HF_TOKEN="$HF_WRITE_TOKEN" # Use write token to update space
|
1419 |
+
export HUGGING_FACE_HUB_TOKEN="$HF_WRITE_TOKEN"
|
1420 |
+
export HF_USERNAME="$HF_USERNAME"
|
1421 |
+
# Switch HF_TOKEN in Trackio Space from write to read token
|
1422 |
+
cd scripts/trackio_tonic
|
1423 |
+
python switch_to_read_token.py "$HF_USERNAME/$TRACKIO_SPACE_NAME" "$HF_READ_TOKEN" "$HF_WRITE_TOKEN"
|
1424 |
+
if [ $? -eq 0 ]; then
|
1425 |
+
print_status "✅ Successfully switched Trackio Space HF_TOKEN to read token"
|
1426 |
+
print_info "🔒 Space now uses read-only permissions for security"
|
1427 |
+
else
|
1428 |
+
print_warning "⚠️ Failed to switch to read token, but continuing with pipeline"
|
1429 |
+
print_info "You can manually switch the token in your Space settings later"
|
1430 |
+
fi
|
1431 |
+
cd ../..
|
1432 |
else
|
1433 |
+
print_info "Skipping token switch (monitoring_mode=$MONITORING_MODE)"
|
|
|
1434 |
fi
|
1435 |
|
|
|
|
|
1436 |
# Step 17: Deploy Demo Space
|
1437 |
print_step "Step 17: Deploying Demo Space"
|
1438 |
echo "=================================="
|
|
|
1460 |
--hf-username "$HF_USERNAME" \
|
1461 |
--model-id "$DEMO_MODEL_ID" \
|
1462 |
--subfolder "$DEMO_SUBFOLDER" \
|
1463 |
+
--space-name "${REPO_SHORT}-demo" \
|
1464 |
+
--config-file "$CONFIG_FILE"
|
1465 |
|
1466 |
if [ $? -eq 0 ]; then
|
1467 |
DEMO_SPACE_URL="https://huggingface.co/spaces/$HF_USERNAME/${REPO_SHORT}-demo"
|
requirements/requirements_core.txt
CHANGED
@@ -22,4 +22,6 @@ pynvml>=12.0.0
|
|
22 |
# GPT-OSS specific dependencies
|
23 |
# Note: GPT-OSS requires specific versions for optimal performance
|
24 |
# These are compatible with the tutorial requirements
|
25 |
-
bitsandbytes>=0.41.0 # For 4-bit quantization
|
|
|
|
|
|
22 |
# GPT-OSS specific dependencies
|
23 |
# Note: GPT-OSS requires specific versions for optimal performance
|
24 |
# These are compatible with the tutorial requirements
|
25 |
+
bitsandbytes>=0.41.0 # For 4-bit quantization
|
26 |
+
triton >= 3.4.0
|
27 |
+
kernels
|
scripts/deploy_demo_space.py
CHANGED
@@ -39,7 +39,7 @@ class DemoSpaceDeployer:
|
|
39 |
|
40 |
def __init__(self, hf_token: str, hf_username: str, model_id: str,
|
41 |
subfolder: str = "int4", space_name: Optional[str] = None,
|
42 |
-
demo_type: Optional[str] = None):
|
43 |
self.hf_token = hf_token
|
44 |
self.hf_username = hf_username
|
45 |
# Allow passing just a repo name without username and auto-prefix
|
@@ -48,6 +48,13 @@ class DemoSpaceDeployer:
|
|
48 |
self.space_name = space_name or f"{self.model_id.split('/')[-1]}-demo"
|
49 |
self.space_id = f"{hf_username}/{self.space_name}"
|
50 |
self.space_url = f"https://huggingface.co/spaces/{self.space_id}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
# Determine demo type from model_id if not provided
|
53 |
if demo_type is None:
|
@@ -64,6 +71,45 @@ class DemoSpaceDeployer:
|
|
64 |
else:
|
65 |
self.api = None
|
66 |
logger.warning("huggingface_hub not available, using CLI fallback")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
def _detect_demo_type(self, model_id: str) -> str:
|
69 |
"""Detect the appropriate demo type based on model ID"""
|
@@ -89,25 +135,34 @@ class DemoSpaceDeployer:
|
|
89 |
if self.demo_type == "gpt":
|
90 |
# For GPT-OSS models, we need more sophisticated environment setup
|
91 |
model_name = self.model_id.split("/")[-1] if "/" in self.model_id else self.model_id
|
92 |
-
|
93 |
env_setup = f"""
|
94 |
# Environment variables for GPT-OSS model configuration
|
95 |
import os
|
96 |
-
os.environ['HF_MODEL_ID'] =
|
97 |
-
os.environ['LORA_MODEL_ID'] =
|
98 |
os.environ['BASE_MODEL_ID'] = 'openai/gpt-oss-20b'
|
99 |
-
os.environ['MODEL_SUBFOLDER'] =
|
100 |
-
os.environ['MODEL_NAME'] =
|
|
|
|
|
|
|
|
|
101 |
|
102 |
"""
|
103 |
else:
|
104 |
# For SmolLM models, use simpler setup
|
|
|
105 |
env_setup = f"""
|
106 |
# Environment variables for model configuration
|
107 |
import os
|
108 |
-
os.environ['HF_MODEL_ID'] =
|
109 |
-
os.environ['MODEL_SUBFOLDER'] =
|
110 |
-
os.environ['MODEL_NAME'] =
|
|
|
|
|
|
|
|
|
111 |
|
112 |
"""
|
113 |
return env_setup
|
@@ -162,6 +217,40 @@ os.environ['MODEL_NAME'] = '{self.model_id.split("/")[-1]}'
|
|
162 |
description="Display name for the model"
|
163 |
)
|
164 |
logger.info(f"✅ Successfully set MODEL_NAME variable: {model_name}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
|
166 |
except Exception as e:
|
167 |
logger.error(f"❌ Failed to set model variables: {e}")
|
@@ -314,28 +403,51 @@ os.environ['MODEL_NAME'] = '{self.model_id.split("/")[-1]}'
|
|
314 |
|
315 |
logger.info("✅ Updated app.py with model configuration")
|
316 |
|
317 |
-
#
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
## Usage
|
334 |
-
Simply start chatting with the model using the interface below!
|
335 |
|
336 |
-
|
337 |
-
|
338 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
339 |
|
340 |
with open(Path(temp_dir) / "README.md", 'w', encoding='utf-8') as f:
|
341 |
f.write(readme_content)
|
@@ -465,6 +577,12 @@ Simply start chatting with the model using the interface below!
|
|
465 |
logger.info(f" LORA_MODEL_ID={self.model_id}")
|
466 |
logger.info(f" BASE_MODEL_ID=openai/gpt-oss-20b")
|
467 |
logger.info(f" MODEL_NAME={model_name}")
|
|
|
|
|
|
|
|
|
|
|
|
|
468 |
|
469 |
logger.info(f"\n🔧 To set secrets in your Space:")
|
470 |
logger.info(f"1. Go to your Space settings: {self.space_url}/settings")
|
@@ -574,6 +692,7 @@ def main():
|
|
574 |
parser.add_argument("--subfolder", default="int4", help="Model subfolder (default: int4)")
|
575 |
parser.add_argument("--space-name", help="Custom space name (optional)")
|
576 |
parser.add_argument("--demo-type", choices=["smol", "gpt"], help="Demo type: 'smol' for SmolLM, 'gpt' for GPT-OSS (auto-detected if not specified)")
|
|
|
577 |
|
578 |
args = parser.parse_args()
|
579 |
|
@@ -583,7 +702,8 @@ def main():
|
|
583 |
model_id=args.model_id,
|
584 |
subfolder=args.subfolder,
|
585 |
space_name=args.space_name,
|
586 |
-
demo_type=args.demo_type
|
|
|
587 |
)
|
588 |
|
589 |
success = deployer.deploy()
|
|
|
39 |
|
40 |
def __init__(self, hf_token: str, hf_username: str, model_id: str,
|
41 |
subfolder: str = "int4", space_name: Optional[str] = None,
|
42 |
+
demo_type: Optional[str] = None, config_file: Optional[str] = None):
|
43 |
self.hf_token = hf_token
|
44 |
self.hf_username = hf_username
|
45 |
# Allow passing just a repo name without username and auto-prefix
|
|
|
48 |
self.space_name = space_name or f"{self.model_id.split('/')[-1]}-demo"
|
49 |
self.space_id = f"{hf_username}/{self.space_name}"
|
50 |
self.space_url = f"https://huggingface.co/spaces/{self.space_id}"
|
51 |
+
self.config_file = config_file
|
52 |
+
|
53 |
+
# Config-derived context
|
54 |
+
self.system_message: Optional[str] = None
|
55 |
+
self.developer_message: Optional[str] = None
|
56 |
+
self.model_identity: Optional[str] = None
|
57 |
+
self.reasoning_effort: Optional[str] = None
|
58 |
|
59 |
# Determine demo type from model_id if not provided
|
60 |
if demo_type is None:
|
|
|
71 |
else:
|
72 |
self.api = None
|
73 |
logger.warning("huggingface_hub not available, using CLI fallback")
|
74 |
+
|
75 |
+
# Load optional config-specified messages
|
76 |
+
try:
|
77 |
+
self._load_config_messages()
|
78 |
+
except Exception as e:
|
79 |
+
logger.warning(f"Could not load config messages: {e}")
|
80 |
+
|
81 |
+
def _load_config_messages(self) -> None:
|
82 |
+
"""Load system/developer/model_identity from a training config file if provided."""
|
83 |
+
if not self.config_file:
|
84 |
+
return
|
85 |
+
cfg_path = Path(self.config_file)
|
86 |
+
if not cfg_path.exists():
|
87 |
+
logger.warning(f"Config file not found: {cfg_path}")
|
88 |
+
return
|
89 |
+
|
90 |
+
# Ensure project root and config dir are importable for relative imports inside config
|
91 |
+
project_root = Path(__file__).parent.parent
|
92 |
+
if str(project_root) not in sys.path:
|
93 |
+
sys.path.insert(0, str(project_root))
|
94 |
+
cfg_dir = project_root / "config"
|
95 |
+
if str(cfg_dir) not in sys.path:
|
96 |
+
sys.path.insert(0, str(cfg_dir))
|
97 |
+
|
98 |
+
import importlib.util
|
99 |
+
spec = importlib.util.spec_from_file_location("config_module", str(cfg_path))
|
100 |
+
if not spec or not spec.loader:
|
101 |
+
return
|
102 |
+
module = importlib.util.module_from_spec(spec)
|
103 |
+
spec.loader.exec_module(module) # type: ignore
|
104 |
+
cfg = getattr(module, "config", None)
|
105 |
+
if cfg is None:
|
106 |
+
return
|
107 |
+
self.system_message = getattr(cfg, "system_message", None)
|
108 |
+
self.developer_message = getattr(cfg, "developer_message", None)
|
109 |
+
chat_kwargs = getattr(cfg, "chat_template_kwargs", None)
|
110 |
+
if isinstance(chat_kwargs, dict):
|
111 |
+
self.model_identity = chat_kwargs.get("model_identity")
|
112 |
+
self.reasoning_effort = chat_kwargs.get("reasoning_effort")
|
113 |
|
114 |
def _detect_demo_type(self, model_id: str) -> str:
|
115 |
"""Detect the appropriate demo type based on model ID"""
|
|
|
135 |
if self.demo_type == "gpt":
|
136 |
# For GPT-OSS models, we need more sophisticated environment setup
|
137 |
model_name = self.model_id.split("/")[-1] if "/" in self.model_id else self.model_id
|
138 |
+
import json as _json
|
139 |
env_setup = f"""
|
140 |
# Environment variables for GPT-OSS model configuration
|
141 |
import os
|
142 |
+
os.environ['HF_MODEL_ID'] = {_json.dumps(self.model_id)}
|
143 |
+
os.environ['LORA_MODEL_ID'] = {_json.dumps(self.model_id)}
|
144 |
os.environ['BASE_MODEL_ID'] = 'openai/gpt-oss-20b'
|
145 |
+
os.environ['MODEL_SUBFOLDER'] = {_json.dumps(self.subfolder if self.subfolder else "")}
|
146 |
+
os.environ['MODEL_NAME'] = {_json.dumps(model_name)}
|
147 |
+
os.environ['MODEL_IDENTITY'] = {_json.dumps(self.model_identity or "")}
|
148 |
+
os.environ['SYSTEM_MESSAGE'] = {_json.dumps(self.system_message or (self.model_identity or ""))}
|
149 |
+
os.environ['DEVELOPER_MESSAGE'] = {_json.dumps(self.developer_message or "")}
|
150 |
+
os.environ['REASONING_EFFORT'] = {_json.dumps((self.reasoning_effort or "medium"))}
|
151 |
|
152 |
"""
|
153 |
else:
|
154 |
# For SmolLM models, use simpler setup
|
155 |
+
import json as _json
|
156 |
env_setup = f"""
|
157 |
# Environment variables for model configuration
|
158 |
import os
|
159 |
+
os.environ['HF_MODEL_ID'] = {_json.dumps(self.model_id)}
|
160 |
+
os.environ['MODEL_SUBFOLDER'] = {_json.dumps(self.subfolder if self.subfolder else "")}
|
161 |
+
os.environ['MODEL_NAME'] = {_json.dumps(self.model_id.split("/")[-1])}
|
162 |
+
os.environ['MODEL_IDENTITY'] = {_json.dumps(self.model_identity or "")}
|
163 |
+
os.environ['SYSTEM_MESSAGE'] = {_json.dumps(self.system_message or (self.model_identity or ""))}
|
164 |
+
os.environ['DEVELOPER_MESSAGE'] = {_json.dumps(self.developer_message or "")}
|
165 |
+
os.environ['REASONING_EFFORT'] = {_json.dumps((self.reasoning_effort or "medium"))}
|
166 |
|
167 |
"""
|
168 |
return env_setup
|
|
|
217 |
description="Display name for the model"
|
218 |
)
|
219 |
logger.info(f"✅ Successfully set MODEL_NAME variable: {model_name}")
|
220 |
+
|
221 |
+
# Optional context variables
|
222 |
+
if self.model_identity:
|
223 |
+
self.api.add_space_variable(
|
224 |
+
repo_id=self.space_id,
|
225 |
+
key="MODEL_IDENTITY",
|
226 |
+
value=self.model_identity,
|
227 |
+
description="Default model identity/system persona"
|
228 |
+
)
|
229 |
+
logger.info("✅ Set MODEL_IDENTITY variable")
|
230 |
+
if self.system_message or self.model_identity:
|
231 |
+
self.api.add_space_variable(
|
232 |
+
repo_id=self.space_id,
|
233 |
+
key="SYSTEM_MESSAGE",
|
234 |
+
value=self.system_message or self.model_identity or "",
|
235 |
+
description="Default system message"
|
236 |
+
)
|
237 |
+
logger.info("✅ Set SYSTEM_MESSAGE variable")
|
238 |
+
if self.developer_message:
|
239 |
+
self.api.add_space_variable(
|
240 |
+
repo_id=self.space_id,
|
241 |
+
key="DEVELOPER_MESSAGE",
|
242 |
+
value=self.developer_message,
|
243 |
+
description="Default developer message"
|
244 |
+
)
|
245 |
+
logger.info("✅ Set DEVELOPER_MESSAGE variable")
|
246 |
+
if self.reasoning_effort:
|
247 |
+
self.api.add_space_variable(
|
248 |
+
repo_id=self.space_id,
|
249 |
+
key="REASONING_EFFORT",
|
250 |
+
value=self.reasoning_effort,
|
251 |
+
description="Default reasoning effort (low|medium|high)"
|
252 |
+
)
|
253 |
+
logger.info("✅ Set REASONING_EFFORT variable")
|
254 |
|
255 |
except Exception as e:
|
256 |
logger.error(f"❌ Failed to set model variables: {e}")
|
|
|
403 |
|
404 |
logger.info("✅ Updated app.py with model configuration")
|
405 |
|
406 |
+
# YAML front matter required by Hugging Face Spaces
|
407 |
+
yaml_front_matter = (
|
408 |
+
f"---\n"
|
409 |
+
f"title: {'GPT-OSS Demo' if self.demo_type == 'gpt' else 'SmolLM3 Demo'}\n"
|
410 |
+
f"emoji: {'🌟' if self.demo_type == 'gpt' else '💃🏻'}\n"
|
411 |
+
f"colorFrom: {'blue' if self.demo_type == 'gpt' else 'green'}\n"
|
412 |
+
f"colorTo: {'pink' if self.demo_type == 'gpt' else 'purple'}\n"
|
413 |
+
f"sdk: gradio\n"
|
414 |
+
f"sdk_version: 5.40.0\n"
|
415 |
+
f"app_file: app.py\n"
|
416 |
+
f"pinned: false\n"
|
417 |
+
f"short_description: Interactive demo for {self.model_id}\n"
|
418 |
+
+ ("license: mit\n" if self.demo_type != 'gpt' else "") +
|
419 |
+
f"---\n\n"
|
420 |
+
)
|
|
|
|
|
|
|
421 |
|
422 |
+
# Create README.md for the space (include configuration details)
|
423 |
+
readme_content = (
|
424 |
+
yaml_front_matter
|
425 |
+
+ f"# Demo: {self.model_id}\n\n"
|
426 |
+
+ f"This is an interactive demo for the fine-tuned model {self.model_id}.\n\n"
|
427 |
+
+ "## Features\n"
|
428 |
+
"- Interactive chat interface\n"
|
429 |
+
"- Customizable system & developer prompts\n"
|
430 |
+
"- Advanced generation parameters\n"
|
431 |
+
"- Thinking mode support\n\n"
|
432 |
+
+ "## Model Information\n"
|
433 |
+
f"- **Model ID**: {self.model_id}\n"
|
434 |
+
f"- **Subfolder**: {self.subfolder if self.subfolder and self.subfolder.strip() else 'main'}\n"
|
435 |
+
f"- **Deployed by**: {self.hf_username}\n"
|
436 |
+
+ ("- **Base Model**: openai/gpt-oss-20b\n" if self.demo_type == 'gpt' else "")
|
437 |
+
+ "\n"
|
438 |
+
+ "## Configuration\n"
|
439 |
+
"- **Model Identity**:\n\n"
|
440 |
+
f"```\n{self.model_identity or 'Not set'}\n```\n\n"
|
441 |
+
"- **System Message** (default):\n\n"
|
442 |
+
f"```\n{(self.system_message or self.model_identity) or 'Not set'}\n```\n\n"
|
443 |
+
"- **Developer Message** (default):\n\n"
|
444 |
+
f"```\n{self.developer_message or 'Not set'}\n```\n\n"
|
445 |
+
"These defaults come from the selected training configuration and can be adjusted in the UI when you run the demo.\n\n"
|
446 |
+
+ "## Usage\n"
|
447 |
+
"Simply start chatting with the model using the interface below!\n\n"
|
448 |
+
+ "---\n"
|
449 |
+
"*This demo was automatically deployed by the SmolFactory Fine-tuning Pipeline*\n"
|
450 |
+
)
|
451 |
|
452 |
with open(Path(temp_dir) / "README.md", 'w', encoding='utf-8') as f:
|
453 |
f.write(readme_content)
|
|
|
577 |
logger.info(f" LORA_MODEL_ID={self.model_id}")
|
578 |
logger.info(f" BASE_MODEL_ID=openai/gpt-oss-20b")
|
579 |
logger.info(f" MODEL_NAME={model_name}")
|
580 |
+
if self.model_identity:
|
581 |
+
logger.info(f" MODEL_IDENTITY={self.model_identity}")
|
582 |
+
if self.system_message:
|
583 |
+
logger.info(f" SYSTEM_MESSAGE={self.system_message}")
|
584 |
+
if self.developer_message:
|
585 |
+
logger.info(f" DEVELOPER_MESSAGE={self.developer_message}")
|
586 |
|
587 |
logger.info(f"\n🔧 To set secrets in your Space:")
|
588 |
logger.info(f"1. Go to your Space settings: {self.space_url}/settings")
|
|
|
692 |
parser.add_argument("--subfolder", default="int4", help="Model subfolder (default: int4)")
|
693 |
parser.add_argument("--space-name", help="Custom space name (optional)")
|
694 |
parser.add_argument("--demo-type", choices=["smol", "gpt"], help="Demo type: 'smol' for SmolLM, 'gpt' for GPT-OSS (auto-detected if not specified)")
|
695 |
+
parser.add_argument("--config-file", help="Path to the training config file to import context (system/developer/model_identity)")
|
696 |
|
697 |
args = parser.parse_args()
|
698 |
|
|
|
702 |
model_id=args.model_id,
|
703 |
subfolder=args.subfolder,
|
704 |
space_name=args.space_name,
|
705 |
+
demo_type=args.demo_type,
|
706 |
+
config_file=args.config_file,
|
707 |
)
|
708 |
|
709 |
success = deployer.deploy()
|
scripts/training/train_gpt_oss.py
CHANGED
@@ -980,7 +980,8 @@ def train_gpt_oss(config_path, experiment_name, output_dir, trackio_url, trainer
|
|
980 |
log_metrics=True,
|
981 |
log_config=True,
|
982 |
hf_token=os.environ.get('HF_TOKEN'),
|
983 |
-
dataset_repo=os.environ.get('TRACKIO_DATASET_REPO')
|
|
|
984 |
)
|
985 |
# Log configuration once
|
986 |
try:
|
|
|
980 |
log_metrics=True,
|
981 |
log_config=True,
|
982 |
hf_token=os.environ.get('HF_TOKEN'),
|
983 |
+
dataset_repo=os.environ.get('TRACKIO_DATASET_REPO'),
|
984 |
+
monitoring_mode=os.environ.get('MONITORING_MODE', 'both'),
|
985 |
)
|
986 |
# Log configuration once
|
987 |
try:
|
src/monitoring.py
CHANGED
@@ -31,7 +31,14 @@ except ImportError:
|
|
31 |
logger = logging.getLogger(__name__)
|
32 |
|
33 |
class SmolLM3Monitor:
|
34 |
-
"""Monitoring and tracking for SmolLM3 fine-tuning experiments with HF Datasets support
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
def __init__(
|
37 |
self,
|
@@ -43,10 +50,25 @@ class SmolLM3Monitor:
|
|
43 |
log_metrics: bool = True,
|
44 |
log_config: bool = True,
|
45 |
hf_token: Optional[str] = None,
|
46 |
-
|
|
|
47 |
):
|
48 |
self.experiment_name = experiment_name
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
self.log_artifacts = log_artifacts
|
51 |
self.log_metrics_enabled = log_metrics # Rename to avoid conflict
|
52 |
self.log_config_enabled = log_config # Rename to avoid conflict
|
@@ -57,7 +79,6 @@ class SmolLM3Monitor:
|
|
57 |
self.flush_interval = 10
|
58 |
|
59 |
# HF Datasets configuration
|
60 |
-
self.hf_token = hf_token or os.environ.get('HF_TOKEN')
|
61 |
self.dataset_repo = dataset_repo or os.environ.get('TRACKIO_DATASET_REPO', 'tonic/trackio-experiments')
|
62 |
|
63 |
# Ensure dataset repository is properly set
|
@@ -73,19 +94,20 @@ class SmolLM3Monitor:
|
|
73 |
|
74 |
# Initialize Trackio API client
|
75 |
self.trackio_client = None
|
76 |
-
if self.
|
77 |
self._setup_trackio(trackio_url, trackio_token)
|
78 |
|
79 |
# Initialize HF Datasets client
|
80 |
self.hf_dataset_client = None
|
81 |
-
|
|
|
82 |
self._setup_hf_datasets()
|
83 |
|
84 |
logger.info("Initialized monitoring for experiment: %s", experiment_name)
|
85 |
logger.info("Dataset repository: %s", self.dataset_repo)
|
86 |
|
87 |
# Create experiment in Trackio if tracking is enabled
|
88 |
-
if self.
|
89 |
self._create_experiment()
|
90 |
|
91 |
def _setup_hf_datasets(self):
|
@@ -136,6 +158,7 @@ class SmolLM3Monitor:
|
|
136 |
if not space_id:
|
137 |
logger.warning("No Trackio Space configured via param or env (TRACKIO_URL/TRACKIO_SPACE_ID). Disabling Trackio tracking.")
|
138 |
self.enable_tracking = False
|
|
|
139 |
return
|
140 |
|
141 |
# Get HF token for Space resolution
|
@@ -151,6 +174,7 @@ class SmolLM3Monitor:
|
|
151 |
logger.warning(f"Trackio Space not accessible: {connection_test['error']}")
|
152 |
logger.info("Continuing with HF Datasets only")
|
153 |
self.enable_tracking = False
|
|
|
154 |
return
|
155 |
logger.info("✅ Trackio Space connection successful")
|
156 |
|
@@ -158,11 +182,13 @@ class SmolLM3Monitor:
|
|
158 |
logger.warning(f"Trackio Space not accessible: {e}")
|
159 |
logger.info("Continuing with HF Datasets only")
|
160 |
self.enable_tracking = False
|
|
|
161 |
return
|
162 |
|
163 |
except Exception as e:
|
164 |
logger.error(f"Failed to setup Trackio: {e}")
|
165 |
self.enable_tracking = False
|
|
|
166 |
|
167 |
def _create_experiment(self):
|
168 |
"""Create experiment in Trackio and set experiment_id"""
|
@@ -218,6 +244,11 @@ class SmolLM3Monitor:
|
|
218 |
- Artifacts/logs: union with de-dup, preserve order
|
219 |
- Top-level scalar fields (e.g., status, name, description, created_at) update only when provided
|
220 |
"""
|
|
|
|
|
|
|
|
|
|
|
221 |
if not self.dataset_manager:
|
222 |
logger.warning("⚠️ Dataset manager not available")
|
223 |
return False
|
@@ -401,7 +432,7 @@ class SmolLM3Monitor:
|
|
401 |
|
402 |
try:
|
403 |
# Log configuration as parameters
|
404 |
-
if self.
|
405 |
try:
|
406 |
result = self.trackio_client.log_parameters(
|
407 |
experiment_id=self.experiment_id,
|
@@ -416,7 +447,8 @@ class SmolLM3Monitor:
|
|
416 |
logger.warning("Trackio configuration logging failed: %s", e)
|
417 |
|
418 |
# Save to HF Dataset
|
419 |
-
self.
|
|
|
420 |
|
421 |
# Also save config locally
|
422 |
config_path = "config_{}_{}.json".format(
|
@@ -467,7 +499,7 @@ class SmolLM3Monitor:
|
|
467 |
metrics['step'] = step
|
468 |
|
469 |
# Log to Trackio (if available)
|
470 |
-
if self.
|
471 |
try:
|
472 |
result = self.trackio_client.log_metrics(
|
473 |
experiment_id=self.experiment_id,
|
@@ -486,18 +518,19 @@ class SmolLM3Monitor:
|
|
486 |
self.metrics_history.append(metrics)
|
487 |
|
488 |
# Save to HF Dataset periodically (configurable)
|
489 |
-
|
490 |
-
|
491 |
-
|
492 |
-
|
493 |
-
self
|
494 |
-
|
495 |
-
|
496 |
-
|
497 |
-
|
498 |
-
|
499 |
-
|
500 |
-
|
|
|
501 |
|
502 |
logger.debug("Metrics logged: %s", metrics)
|
503 |
|
@@ -518,7 +551,7 @@ class SmolLM3Monitor:
|
|
518 |
"checkpoint_size": os.path.getsize(checkpoint_path) if os.path.exists(checkpoint_path) else 0
|
519 |
}
|
520 |
|
521 |
-
if self.
|
522 |
result = self.trackio_client.log_parameters(
|
523 |
experiment_id=self.experiment_id,
|
524 |
parameters=checkpoint_info
|
@@ -531,10 +564,11 @@ class SmolLM3Monitor:
|
|
531 |
|
532 |
self.artifacts.append(checkpoint_path)
|
533 |
# Also preserve checkpoint info in HF dataset
|
534 |
-
|
535 |
-
|
536 |
-
|
537 |
-
|
|
|
538 |
logger.info("Checkpoint logged: %s", checkpoint_path)
|
539 |
|
540 |
except Exception as e:
|
@@ -597,7 +631,7 @@ class SmolLM3Monitor:
|
|
597 |
summary['experiment_duration_hours'] = duration / 3600
|
598 |
|
599 |
# Log final summary to Trackio
|
600 |
-
if self.
|
601 |
result = self.trackio_client.log_parameters(
|
602 |
experiment_id=self.experiment_id,
|
603 |
parameters=summary
|
@@ -609,7 +643,8 @@ class SmolLM3Monitor:
|
|
609 |
logger.error("Failed to log training summary to Trackio: %s", result)
|
610 |
|
611 |
# Save to HF Dataset
|
612 |
-
self.
|
|
|
613 |
|
614 |
# Save summary locally
|
615 |
summary_path = "training_summary_{}_{}.json".format(
|
@@ -731,7 +766,7 @@ class SmolLM3Monitor:
|
|
731 |
|
732 |
def get_experiment_url(self) -> Optional[str]:
|
733 |
"""Get the URL to view the experiment in Trackio"""
|
734 |
-
if self.trackio_client and self.experiment_id:
|
735 |
return "{}?tab=view_experiments".format(self.trackio_client.space_url)
|
736 |
return None
|
737 |
|
@@ -744,7 +779,7 @@ class SmolLM3Monitor:
|
|
744 |
"""
|
745 |
logger.info(f"🔚 Closing monitoring session with status: {final_status}")
|
746 |
|
747 |
-
if self.
|
748 |
try:
|
749 |
# Mark experiment as completed in Trackio
|
750 |
result = self.trackio_client.update_experiment_status(
|
@@ -759,7 +794,7 @@ class SmolLM3Monitor:
|
|
759 |
logger.error("❌ Failed to close Trackio monitoring session: %s", e)
|
760 |
|
761 |
# Final save to HF Dataset with proper status update
|
762 |
-
if self.dataset_manager:
|
763 |
try:
|
764 |
# Update experiment with final status without clobbering metrics
|
765 |
final_experiment_data = {
|
@@ -798,5 +833,6 @@ def create_monitor_from_config(config, experiment_name: Optional[str] = None) ->
|
|
798 |
log_metrics=getattr(config, 'log_metrics', True),
|
799 |
log_config=getattr(config, 'log_config', True),
|
800 |
hf_token=getattr(config, 'hf_token', None),
|
801 |
-
dataset_repo=getattr(config, 'dataset_repo', None)
|
|
|
802 |
)
|
|
|
31 |
logger = logging.getLogger(__name__)
|
32 |
|
33 |
class SmolLM3Monitor:
|
34 |
+
"""Monitoring and tracking for SmolLM3 fine-tuning experiments with HF Datasets support
|
35 |
+
|
36 |
+
Monitoring modes:
|
37 |
+
- "both": Log to Trackio Space and HF Datasets (plus local JSON files)
|
38 |
+
- "dataset": Log only to HF Datasets (plus local JSON files). Trackio Space is not written to
|
39 |
+
- "trackio": Log only to Trackio Space (plus local JSON files). HF Datasets writes are disabled
|
40 |
+
- "none": Local-only logging; no remote writes
|
41 |
+
"""
|
42 |
|
43 |
def __init__(
|
44 |
self,
|
|
|
50 |
log_metrics: bool = True,
|
51 |
log_config: bool = True,
|
52 |
hf_token: Optional[str] = None,
|
53 |
+
dataset_repo: Optional[str] = None,
|
54 |
+
monitoring_mode: Optional[str] = None,
|
55 |
):
|
56 |
self.experiment_name = experiment_name
|
57 |
+
# Determine monitoring mode (env override supported)
|
58 |
+
mode_env = os.environ.get('MONITORING_MODE')
|
59 |
+
selected_mode = (monitoring_mode or mode_env or 'both').strip().lower()
|
60 |
+
if selected_mode not in ('both', 'dataset', 'trackio', 'none'):
|
61 |
+
selected_mode = 'both'
|
62 |
+
self.monitoring_mode = selected_mode
|
63 |
+
|
64 |
+
# Track which backends are active
|
65 |
+
self.use_trackio = (selected_mode in ('both', 'trackio')) and enable_tracking and TRACKIO_AVAILABLE
|
66 |
+
# HF dataset only if mode requires it and token is available (repo validated later)
|
67 |
+
self.hf_token = hf_token or os.environ.get('HF_TOKEN')
|
68 |
+
self.use_dataset = (selected_mode in ('both', 'dataset')) and bool(self.hf_token)
|
69 |
+
|
70 |
+
# For TRL compatibility, "enable_tracking" reflects Trackio availability
|
71 |
+
self.enable_tracking = self.use_trackio
|
72 |
self.log_artifacts = log_artifacts
|
73 |
self.log_metrics_enabled = log_metrics # Rename to avoid conflict
|
74 |
self.log_config_enabled = log_config # Rename to avoid conflict
|
|
|
79 |
self.flush_interval = 10
|
80 |
|
81 |
# HF Datasets configuration
|
|
|
82 |
self.dataset_repo = dataset_repo or os.environ.get('TRACKIO_DATASET_REPO', 'tonic/trackio-experiments')
|
83 |
|
84 |
# Ensure dataset repository is properly set
|
|
|
94 |
|
95 |
# Initialize Trackio API client
|
96 |
self.trackio_client = None
|
97 |
+
if self.use_trackio:
|
98 |
self._setup_trackio(trackio_url, trackio_token)
|
99 |
|
100 |
# Initialize HF Datasets client
|
101 |
self.hf_dataset_client = None
|
102 |
+
self.dataset_manager = None
|
103 |
+
if self.use_dataset:
|
104 |
self._setup_hf_datasets()
|
105 |
|
106 |
logger.info("Initialized monitoring for experiment: %s", experiment_name)
|
107 |
logger.info("Dataset repository: %s", self.dataset_repo)
|
108 |
|
109 |
# Create experiment in Trackio if tracking is enabled
|
110 |
+
if self.use_trackio and self.trackio_client:
|
111 |
self._create_experiment()
|
112 |
|
113 |
def _setup_hf_datasets(self):
|
|
|
158 |
if not space_id:
|
159 |
logger.warning("No Trackio Space configured via param or env (TRACKIO_URL/TRACKIO_SPACE_ID). Disabling Trackio tracking.")
|
160 |
self.enable_tracking = False
|
161 |
+
self.use_trackio = False
|
162 |
return
|
163 |
|
164 |
# Get HF token for Space resolution
|
|
|
174 |
logger.warning(f"Trackio Space not accessible: {connection_test['error']}")
|
175 |
logger.info("Continuing with HF Datasets only")
|
176 |
self.enable_tracking = False
|
177 |
+
self.use_trackio = False
|
178 |
return
|
179 |
logger.info("✅ Trackio Space connection successful")
|
180 |
|
|
|
182 |
logger.warning(f"Trackio Space not accessible: {e}")
|
183 |
logger.info("Continuing with HF Datasets only")
|
184 |
self.enable_tracking = False
|
185 |
+
self.use_trackio = False
|
186 |
return
|
187 |
|
188 |
except Exception as e:
|
189 |
logger.error(f"Failed to setup Trackio: {e}")
|
190 |
self.enable_tracking = False
|
191 |
+
self.use_trackio = False
|
192 |
|
193 |
def _create_experiment(self):
|
194 |
"""Create experiment in Trackio and set experiment_id"""
|
|
|
244 |
- Artifacts/logs: union with de-dup, preserve order
|
245 |
- Top-level scalar fields (e.g., status, name, description, created_at) update only when provided
|
246 |
"""
|
247 |
+
# Respect monitoring mode
|
248 |
+
if not self.use_dataset:
|
249 |
+
logger.debug("Dataset persistence disabled by monitoring_mode=%s", self.monitoring_mode)
|
250 |
+
return False
|
251 |
+
|
252 |
if not self.dataset_manager:
|
253 |
logger.warning("⚠️ Dataset manager not available")
|
254 |
return False
|
|
|
432 |
|
433 |
try:
|
434 |
# Log configuration as parameters
|
435 |
+
if self.use_trackio and self.trackio_client:
|
436 |
try:
|
437 |
result = self.trackio_client.log_parameters(
|
438 |
experiment_id=self.experiment_id,
|
|
|
447 |
logger.warning("Trackio configuration logging failed: %s", e)
|
448 |
|
449 |
# Save to HF Dataset
|
450 |
+
if self.use_dataset:
|
451 |
+
self._save_to_hf_dataset(config)
|
452 |
|
453 |
# Also save config locally
|
454 |
config_path = "config_{}_{}.json".format(
|
|
|
499 |
metrics['step'] = step
|
500 |
|
501 |
# Log to Trackio (if available)
|
502 |
+
if self.use_trackio and self.trackio_client:
|
503 |
try:
|
504 |
result = self.trackio_client.log_metrics(
|
505 |
experiment_id=self.experiment_id,
|
|
|
518 |
self.metrics_history.append(metrics)
|
519 |
|
520 |
# Save to HF Dataset periodically (configurable)
|
521 |
+
if self.use_dataset:
|
522 |
+
flush_every = max(1, int(getattr(self, 'flush_interval', 10)))
|
523 |
+
# Only append the delta since last flush to minimize risk
|
524 |
+
try:
|
525 |
+
if not hasattr(self, '_last_flushed_index'):
|
526 |
+
self._last_flushed_index = 0
|
527 |
+
if len(self.metrics_history) - self._last_flushed_index >= flush_every:
|
528 |
+
new_slice = self.metrics_history[self._last_flushed_index:]
|
529 |
+
# Persist only the tail slice; merge code will union-append
|
530 |
+
self._save_to_hf_dataset({'metrics': new_slice})
|
531 |
+
self._last_flushed_index = len(self.metrics_history)
|
532 |
+
except Exception:
|
533 |
+
pass
|
534 |
|
535 |
logger.debug("Metrics logged: %s", metrics)
|
536 |
|
|
|
551 |
"checkpoint_size": os.path.getsize(checkpoint_path) if os.path.exists(checkpoint_path) else 0
|
552 |
}
|
553 |
|
554 |
+
if self.use_trackio and self.trackio_client:
|
555 |
result = self.trackio_client.log_parameters(
|
556 |
experiment_id=self.experiment_id,
|
557 |
parameters=checkpoint_info
|
|
|
564 |
|
565 |
self.artifacts.append(checkpoint_path)
|
566 |
# Also preserve checkpoint info in HF dataset
|
567 |
+
if self.use_dataset:
|
568 |
+
try:
|
569 |
+
self._save_to_hf_dataset({'artifacts': [checkpoint_path], **checkpoint_info})
|
570 |
+
except Exception:
|
571 |
+
pass
|
572 |
logger.info("Checkpoint logged: %s", checkpoint_path)
|
573 |
|
574 |
except Exception as e:
|
|
|
631 |
summary['experiment_duration_hours'] = duration / 3600
|
632 |
|
633 |
# Log final summary to Trackio
|
634 |
+
if self.use_trackio and self.trackio_client:
|
635 |
result = self.trackio_client.log_parameters(
|
636 |
experiment_id=self.experiment_id,
|
637 |
parameters=summary
|
|
|
643 |
logger.error("Failed to log training summary to Trackio: %s", result)
|
644 |
|
645 |
# Save to HF Dataset
|
646 |
+
if self.use_dataset:
|
647 |
+
self._save_to_hf_dataset(summary)
|
648 |
|
649 |
# Save summary locally
|
650 |
summary_path = "training_summary_{}_{}.json".format(
|
|
|
766 |
|
767 |
def get_experiment_url(self) -> Optional[str]:
|
768 |
"""Get the URL to view the experiment in Trackio"""
|
769 |
+
if self.use_trackio and self.trackio_client and self.experiment_id:
|
770 |
return "{}?tab=view_experiments".format(self.trackio_client.space_url)
|
771 |
return None
|
772 |
|
|
|
779 |
"""
|
780 |
logger.info(f"🔚 Closing monitoring session with status: {final_status}")
|
781 |
|
782 |
+
if self.use_trackio and self.trackio_client:
|
783 |
try:
|
784 |
# Mark experiment as completed in Trackio
|
785 |
result = self.trackio_client.update_experiment_status(
|
|
|
794 |
logger.error("❌ Failed to close Trackio monitoring session: %s", e)
|
795 |
|
796 |
# Final save to HF Dataset with proper status update
|
797 |
+
if self.use_dataset and self.dataset_manager:
|
798 |
try:
|
799 |
# Update experiment with final status without clobbering metrics
|
800 |
final_experiment_data = {
|
|
|
833 |
log_metrics=getattr(config, 'log_metrics', True),
|
834 |
log_config=getattr(config, 'log_config', True),
|
835 |
hf_token=getattr(config, 'hf_token', None),
|
836 |
+
dataset_repo=getattr(config, 'dataset_repo', None),
|
837 |
+
monitoring_mode=getattr(config, 'monitoring_mode', os.environ.get('MONITORING_MODE', 'both'))
|
838 |
)
|
src/trackio.py
CHANGED
@@ -49,6 +49,11 @@ def init(
|
|
49 |
trackio_token = kwargs.get('trackio_token') or os.environ.get('TRACKIO_TOKEN')
|
50 |
hf_token = kwargs.get('hf_token') or os.environ.get('HF_TOKEN')
|
51 |
dataset_repo = kwargs.get('dataset_repo') or os.environ.get('TRACKIO_DATASET_REPO', 'tonic/trackio-experiments')
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
# Use experiment_name if provided, otherwise use project_name
|
54 |
exp_name = experiment_name or project_name
|
@@ -63,7 +68,8 @@ def init(
|
|
63 |
log_metrics=True,
|
64 |
log_config=True,
|
65 |
hf_token=hf_token,
|
66 |
-
dataset_repo=dataset_repo
|
|
|
67 |
)
|
68 |
# The monitor constructor creates the experiment remotely and sets
|
69 |
# `experiment_id`. Do NOT overwrite it with a locally generated ID.
|
@@ -229,6 +235,7 @@ class TrackioConfig:
|
|
229 |
self.trackio_token = os.environ.get('TRACKIO_TOKEN')
|
230 |
self.hf_token = os.environ.get('HF_TOKEN')
|
231 |
self.dataset_repo = os.environ.get('TRACKIO_DATASET_REPO', 'tonic/trackio-experiments')
|
|
|
232 |
|
233 |
def update(self, config_dict: Dict[str, Any] = None, **kwargs):
|
234 |
"""
|
|
|
49 |
trackio_token = kwargs.get('trackio_token') or os.environ.get('TRACKIO_TOKEN')
|
50 |
hf_token = kwargs.get('hf_token') or os.environ.get('HF_TOKEN')
|
51 |
dataset_repo = kwargs.get('dataset_repo') or os.environ.get('TRACKIO_DATASET_REPO', 'tonic/trackio-experiments')
|
52 |
+
monitoring_mode = (
|
53 |
+
kwargs.get('monitoring_mode')
|
54 |
+
or os.environ.get('MONITORING_MODE')
|
55 |
+
or 'both'
|
56 |
+
)
|
57 |
|
58 |
# Use experiment_name if provided, otherwise use project_name
|
59 |
exp_name = experiment_name or project_name
|
|
|
68 |
log_metrics=True,
|
69 |
log_config=True,
|
70 |
hf_token=hf_token,
|
71 |
+
dataset_repo=dataset_repo,
|
72 |
+
monitoring_mode=monitoring_mode,
|
73 |
)
|
74 |
# The monitor constructor creates the experiment remotely and sets
|
75 |
# `experiment_id`. Do NOT overwrite it with a locally generated ID.
|
|
|
235 |
self.trackio_token = os.environ.get('TRACKIO_TOKEN')
|
236 |
self.hf_token = os.environ.get('HF_TOKEN')
|
237 |
self.dataset_repo = os.environ.get('TRACKIO_DATASET_REPO', 'tonic/trackio-experiments')
|
238 |
+
self.monitoring_mode = os.environ.get('MONITORING_MODE', 'both')
|
239 |
|
240 |
def update(self, config_dict: Dict[str, Any] = None, **kwargs):
|
241 |
"""
|
src/train.py
CHANGED
@@ -154,21 +154,25 @@ def main():
|
|
154 |
|
155 |
logger.info(f"Output path: {output_path}")
|
156 |
|
157 |
-
# Initialize monitoring
|
158 |
monitor = None
|
159 |
-
|
160 |
-
|
|
|
|
|
|
|
|
|
|
|
161 |
monitor = create_monitor_from_config(config, args.experiment_name)
|
162 |
logger.info(f"✅ Monitoring initialized for experiment: {monitor.experiment_name}")
|
|
|
163 |
logger.info(f"📊 Dataset repository: {monitor.dataset_repo}")
|
164 |
-
|
165 |
# Log configuration
|
166 |
config_dict = {k: v for k, v in vars(config).items() if not k.startswith('_')}
|
167 |
monitor.log_configuration(config_dict)
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
logger.warning("Continuing without monitoring...")
|
172 |
|
173 |
# Initialize model
|
174 |
model = SmolLM3Model(
|
|
|
154 |
|
155 |
logger.info(f"Output path: {output_path}")
|
156 |
|
157 |
+
# Initialize monitoring (supports local-only mode)
|
158 |
monitor = None
|
159 |
+
try:
|
160 |
+
monitoring_mode = getattr(config, 'monitoring_mode', os.environ.get('MONITORING_MODE', 'both')).lower()
|
161 |
+
should_create_monitor = (
|
162 |
+
monitoring_mode in ('both', 'dataset', 'trackio', 'none')
|
163 |
+
and (getattr(config, 'enable_tracking', True) or monitoring_mode in ('dataset', 'none'))
|
164 |
+
)
|
165 |
+
if should_create_monitor:
|
166 |
monitor = create_monitor_from_config(config, args.experiment_name)
|
167 |
logger.info(f"✅ Monitoring initialized for experiment: {monitor.experiment_name}")
|
168 |
+
logger.info(f"📊 Monitoring mode: {monitor.monitoring_mode}")
|
169 |
logger.info(f"📊 Dataset repository: {monitor.dataset_repo}")
|
|
|
170 |
# Log configuration
|
171 |
config_dict = {k: v for k, v in vars(config).items() if not k.startswith('_')}
|
172 |
monitor.log_configuration(config_dict)
|
173 |
+
except Exception as e:
|
174 |
+
logger.error(f"Failed to initialize monitoring: {e}")
|
175 |
+
logger.warning("Continuing without monitoring...")
|
|
|
176 |
|
177 |
# Initialize model
|
178 |
model = SmolLM3Model(
|
templates/model_card.md
CHANGED
@@ -11,7 +11,7 @@ tags:
|
|
11 |
- text-generation
|
12 |
- tonic
|
13 |
- legml
|
14 |
-
|
15 |
pipeline_tag: text-generation
|
16 |
base_model: {{base_model}}
|
17 |
{{#if dataset_name}}
|
|
|
11 |
- text-generation
|
12 |
- tonic
|
13 |
- legml
|
14 |
+
{{#if quantized_models}}- quantized{{/if}}
|
15 |
pipeline_tag: text-generation
|
16 |
base_model: {{base_model}}
|
17 |
{{#if dataset_name}}
|
templates/spaces/demo_gpt/app.py
CHANGED
@@ -18,6 +18,12 @@ LORA_MODEL_ID = os.getenv('LORA_MODEL_ID', os.getenv('HF_MODEL_ID', 'Tonic/gpt-o
|
|
18 |
MODEL_NAME = os.getenv('MODEL_NAME', 'GPT-OSS Multilingual Reasoner')
|
19 |
MODEL_SUBFOLDER = os.getenv('MODEL_SUBFOLDER', '')
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
# If the LORA_MODEL_ID is the same as BASE_MODEL_ID, this is a merged model, not LoRA
|
22 |
USE_LORA = LORA_MODEL_ID != BASE_MODEL_ID and not LORA_MODEL_ID.startswith(BASE_MODEL_ID)
|
23 |
|
@@ -130,7 +136,7 @@ def format_analysis_response(text):
|
|
130 |
return cleaned
|
131 |
|
132 |
@spaces.GPU(duration=60)
|
133 |
-
def generate_response(input_data, chat_history, max_new_tokens, system_prompt, temperature, top_p, top_k, repetition_penalty):
|
134 |
if not input_data.strip():
|
135 |
yield "Please enter a prompt."
|
136 |
return
|
@@ -140,14 +146,37 @@ def generate_response(input_data, chat_history, max_new_tokens, system_prompt, t
|
|
140 |
logging.info(f"[System] {system_prompt} | Temp={temperature} | Max tokens={max_new_tokens}")
|
141 |
|
142 |
new_message = {"role": "user", "content": input_data}
|
143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
processed_history = format_conversation_history(chat_history)
|
145 |
-
messages = system_message + processed_history + [new_message]
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
|
152 |
# Create streamer for proper streaming
|
153 |
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
@@ -211,12 +240,30 @@ demo = gr.ChatInterface(
|
|
211 |
fn=generate_response,
|
212 |
additional_inputs=[
|
213 |
gr.Slider(label="Max new tokens", minimum=64, maximum=4096, step=1, value=2048),
|
|
|
|
|
|
|
|
|
|
|
|
|
214 |
gr.Textbox(
|
215 |
label="System Prompt",
|
216 |
-
value=
|
217 |
lines=4,
|
218 |
placeholder="Change system prompt"
|
219 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
220 |
gr.Slider(label="Temperature", minimum=0.1, maximum=2.0, step=0.1, value=0.7),
|
221 |
gr.Slider(label="Top-p", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
|
222 |
gr.Slider(label="Top-k", minimum=1, maximum=100, step=1, value=50),
|
|
|
18 |
MODEL_NAME = os.getenv('MODEL_NAME', 'GPT-OSS Multilingual Reasoner')
|
19 |
MODEL_SUBFOLDER = os.getenv('MODEL_SUBFOLDER', '')
|
20 |
|
21 |
+
# Optional persona and prompts derived from training config
|
22 |
+
MODEL_IDENTITY = os.getenv('MODEL_IDENTITY', '')
|
23 |
+
DEFAULT_SYSTEM_PROMPT = os.getenv('SYSTEM_MESSAGE', MODEL_IDENTITY or 'You are a helpful assistant. Reasoning: medium')
|
24 |
+
DEFAULT_DEVELOPER_PROMPT = os.getenv('DEVELOPER_MESSAGE', '')
|
25 |
+
DEFAULT_REASONING_EFFORT = os.getenv('REASONING_EFFORT', 'medium')
|
26 |
+
|
27 |
# If the LORA_MODEL_ID is the same as BASE_MODEL_ID, this is a merged model, not LoRA
|
28 |
USE_LORA = LORA_MODEL_ID != BASE_MODEL_ID and not LORA_MODEL_ID.startswith(BASE_MODEL_ID)
|
29 |
|
|
|
136 |
return cleaned
|
137 |
|
138 |
@spaces.GPU(duration=60)
|
139 |
+
def generate_response(input_data, chat_history, max_new_tokens, model_identity, system_prompt, developer_prompt, reasoning_effort, temperature, top_p, top_k, repetition_penalty):
|
140 |
if not input_data.strip():
|
141 |
yield "Please enter a prompt."
|
142 |
return
|
|
|
146 |
logging.info(f"[System] {system_prompt} | Temp={temperature} | Max tokens={max_new_tokens}")
|
147 |
|
148 |
new_message = {"role": "user", "content": input_data}
|
149 |
+
# Combine model identity with system prompt for a single system message
|
150 |
+
combined_parts = []
|
151 |
+
if model_identity and model_identity.strip():
|
152 |
+
combined_parts.append(model_identity.strip())
|
153 |
+
if system_prompt and system_prompt.strip():
|
154 |
+
combined_parts.append(system_prompt.strip())
|
155 |
+
if reasoning_effort and isinstance(reasoning_effort, str) and reasoning_effort.strip():
|
156 |
+
# Append explicit reasoning directive
|
157 |
+
combined_parts.append(f"Reasoning: {reasoning_effort.strip()}")
|
158 |
+
combined_system = "\n\n".join(combined_parts).strip()
|
159 |
+
system_message = ([{"role": "system", "content": combined_system}] if combined_system else [])
|
160 |
+
developer_message = [{"role": "developer", "content": developer_prompt}] if developer_prompt else []
|
161 |
processed_history = format_conversation_history(chat_history)
|
162 |
+
messages = system_message + developer_message + processed_history + [new_message]
|
163 |
+
try:
|
164 |
+
prompt = tokenizer.apply_chat_template(
|
165 |
+
messages,
|
166 |
+
tokenize=False,
|
167 |
+
add_generation_prompt=True
|
168 |
+
)
|
169 |
+
except Exception:
|
170 |
+
# Fallback: merge developer prompt into system prompt if template doesn't support 'developer' role
|
171 |
+
fallback_sys = combined_system
|
172 |
+
if developer_prompt:
|
173 |
+
fallback_sys = (fallback_sys + ("\n\n[Developer]\n" if fallback_sys else "[Developer]\n") + developer_prompt).strip()
|
174 |
+
fallback_messages = ([{"role": "system", "content": fallback_sys}] if fallback_sys else []) + processed_history + [new_message]
|
175 |
+
prompt = tokenizer.apply_chat_template(
|
176 |
+
fallback_messages,
|
177 |
+
tokenize=False,
|
178 |
+
add_generation_prompt=True
|
179 |
+
)
|
180 |
|
181 |
# Create streamer for proper streaming
|
182 |
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
|
|
240 |
fn=generate_response,
|
241 |
additional_inputs=[
|
242 |
gr.Slider(label="Max new tokens", minimum=64, maximum=4096, step=1, value=2048),
|
243 |
+
gr.Textbox(
|
244 |
+
label="Model Identity",
|
245 |
+
value=MODEL_IDENTITY,
|
246 |
+
lines=3,
|
247 |
+
placeholder="Optional identity/persona for the model"
|
248 |
+
),
|
249 |
gr.Textbox(
|
250 |
label="System Prompt",
|
251 |
+
value=DEFAULT_SYSTEM_PROMPT,
|
252 |
lines=4,
|
253 |
placeholder="Change system prompt"
|
254 |
),
|
255 |
+
gr.Textbox(
|
256 |
+
label="Developer Prompt",
|
257 |
+
value=DEFAULT_DEVELOPER_PROMPT,
|
258 |
+
lines=4,
|
259 |
+
placeholder="Optional developer instructions"
|
260 |
+
),
|
261 |
+
gr.Dropdown(
|
262 |
+
label="Reasoning Effort",
|
263 |
+
choices=["low", "medium", "high"],
|
264 |
+
value=DEFAULT_REASONING_EFFORT,
|
265 |
+
interactive=True,
|
266 |
+
),
|
267 |
gr.Slider(label="Temperature", minimum=0.1, maximum=2.0, step=0.1, value=0.7),
|
268 |
gr.Slider(label="Top-p", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
|
269 |
gr.Slider(label="Top-k", minimum=1, maximum=100, step=1, value=50),
|
templates/spaces/trackio/app.py
CHANGED
@@ -1143,33 +1143,63 @@ def create_metrics_plot(experiment_id: str, metric_name: str = "loss") -> go.Fig
|
|
1143 |
)
|
1144 |
return fig
|
1145 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1146 |
# Ensure steps are numeric and monotonically increasing to avoid zig-zag lines
|
1147 |
try:
|
1148 |
df = df.copy()
|
1149 |
-
#
|
1150 |
-
|
1151 |
-
|
1152 |
-
|
1153 |
-
|
1154 |
-
|
1155 |
-
|
1156 |
-
|
1157 |
-
|
|
|
|
|
1158 |
else:
|
1159 |
-
|
1160 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1161 |
except Exception:
|
1162 |
-
|
1163 |
-
|
|
|
|
|
|
|
|
|
|
|
1164 |
fig.update_layout(
|
1165 |
-
xaxis_title="Training Step",
|
1166 |
yaxis_title=metric_name.title(),
|
1167 |
hovermode='x unified'
|
1168 |
)
|
1169 |
-
#
|
1170 |
try:
|
1171 |
for trace in fig.data:
|
1172 |
-
trace.connectgaps = False
|
|
|
|
|
1173 |
except Exception:
|
1174 |
pass
|
1175 |
return fig
|
@@ -1547,6 +1577,16 @@ def create_combined_metrics_plot(experiment_id: str) -> go.Figure:
|
|
1547 |
# Define colors for different metrics
|
1548 |
colors = ['blue', 'red', 'green', 'orange', 'purple', 'brown', 'pink', 'gray', 'cyan', 'magenta']
|
1549 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1550 |
for i, metric in enumerate(numeric_cols):
|
1551 |
if metric in df.columns and not df[metric].isna().all():
|
1552 |
row = (i // n_cols) + 1
|
@@ -1556,31 +1596,54 @@ def create_combined_metrics_plot(experiment_id: str) -> go.Figure:
|
|
1556 |
# Clean steps for each subplot too
|
1557 |
try:
|
1558 |
df_sub = df.copy()
|
1559 |
-
|
1560 |
-
|
1561 |
-
|
1562 |
-
|
1563 |
-
|
1564 |
-
|
1565 |
-
|
|
|
|
|
|
|
1566 |
else:
|
1567 |
-
|
1568 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1569 |
except Exception:
|
1570 |
df_sub = df
|
|
|
|
|
|
|
1571 |
fig.add_trace(
|
1572 |
go.Scatter(
|
1573 |
-
x=
|
1574 |
-
y=
|
1575 |
mode='lines+markers',
|
1576 |
name=metric,
|
1577 |
line=dict(width=2, color=color),
|
1578 |
marker=dict(size=4, color=color),
|
1579 |
showlegend=False,
|
1580 |
-
connectgaps=False
|
1581 |
),
|
1582 |
row=row, col=col
|
1583 |
)
|
|
|
|
|
|
|
|
|
|
|
1584 |
|
1585 |
fig.update_layout(
|
1586 |
title=f"All Metrics for Experiment {experiment_id}",
|
@@ -1677,7 +1740,7 @@ def create_experiment_comparison_from_selection(selected_experiments: list, sele
|
|
1677 |
plot_bgcolor='white', paper_bgcolor='white'
|
1678 |
)
|
1679 |
return fig
|
1680 |
-
|
1681 |
if not selected_metrics:
|
1682 |
fig = go.Figure()
|
1683 |
fig.add_annotation(
|
@@ -1691,10 +1754,180 @@ def create_experiment_comparison_from_selection(selected_experiments: list, sele
|
|
1691 |
plot_bgcolor='white', paper_bgcolor='white'
|
1692 |
)
|
1693 |
return fig
|
1694 |
-
|
1695 |
-
#
|
1696 |
-
|
1697 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1698 |
|
1699 |
except Exception as e:
|
1700 |
logger.error(f"Error creating comparison from selection: {str(e)}")
|
|
|
1143 |
)
|
1144 |
return fig
|
1145 |
|
1146 |
+
# Helper predicates
|
1147 |
+
def _is_eval_metric(name: str) -> bool:
|
1148 |
+
return name.startswith('eval_') or name.startswith('eval/')
|
1149 |
+
|
1150 |
+
def _is_system_metric(name: str) -> bool:
|
1151 |
+
import re
|
1152 |
+
if name in ("cpu_percent", "memory_percent"):
|
1153 |
+
return True
|
1154 |
+
return re.match(r"^gpu_\d+_(memory_allocated|memory_reserved|utilization)$", name) is not None
|
1155 |
+
|
1156 |
# Ensure steps are numeric and monotonically increasing to avoid zig-zag lines
|
1157 |
try:
|
1158 |
df = df.copy()
|
1159 |
+
# Choose x-axis: time for system metrics, step otherwise
|
1160 |
+
use_time_axis = _is_system_metric(metric_name)
|
1161 |
+
|
1162 |
+
if use_time_axis:
|
1163 |
+
# Convert timestamp to datetime for nicer axis rendering
|
1164 |
+
df['time'] = pd.to_datetime(df.get('timestamp', ''), errors='coerce')
|
1165 |
+
# Fallback order if timestamps are missing
|
1166 |
+
if df['time'].isna().all():
|
1167 |
+
df['time'] = range(1, len(df) + 1)
|
1168 |
+
df.sort_values('time', inplace=True)
|
1169 |
+
x_field = 'time'
|
1170 |
else:
|
1171 |
+
# If step looks constant or missing, try to derive it from a common field
|
1172 |
+
if 'step' not in df or df['step'].nunique() <= 1:
|
1173 |
+
for alt in ['train/global_step', 'global_step', 'train/step']:
|
1174 |
+
if alt in df.columns and df[alt].notna().any():
|
1175 |
+
df['step'] = pd.to_numeric(df[alt], errors='coerce')
|
1176 |
+
break
|
1177 |
+
# If still missing or constant, fallback to an inferred counter by order of arrival
|
1178 |
+
if 'step' not in df.columns or df['step'].isna().all() or df['step'].nunique() <= 1:
|
1179 |
+
df['step'] = range(1, len(df) + 1)
|
1180 |
+
else:
|
1181 |
+
df['step'] = pd.to_numeric(df.get('step', -1), errors='coerce').fillna(-1)
|
1182 |
+
df.sort_values('step', inplace=True)
|
1183 |
+
x_field = 'step'
|
1184 |
except Exception:
|
1185 |
+
x_field = 'step'
|
1186 |
+
# Filter rows where the metric is present to ensure connected lines
|
1187 |
+
try:
|
1188 |
+
plot_df = df[[x_field, metric_name]].dropna(subset=[metric_name]).copy()
|
1189 |
+
except Exception:
|
1190 |
+
plot_df = df
|
1191 |
+
fig = px.line(plot_df, x=x_field, y=metric_name, title=f'{metric_name} over time')
|
1192 |
fig.update_layout(
|
1193 |
+
xaxis_title="Time" if (metric_name in ("cpu_percent", "memory_percent") or metric_name.startswith('gpu_')) else "Training Step",
|
1194 |
yaxis_title=metric_name.title(),
|
1195 |
hovermode='x unified'
|
1196 |
)
|
1197 |
+
# Connect points for evaluation metrics, avoid connecting gaps for others
|
1198 |
try:
|
1199 |
for trace in fig.data:
|
1200 |
+
trace.connectgaps = True if _is_eval_metric(metric_name) else False
|
1201 |
+
# Force line+markers to visually connect points
|
1202 |
+
trace.mode = 'lines+markers'
|
1203 |
except Exception:
|
1204 |
pass
|
1205 |
return fig
|
|
|
1577 |
# Define colors for different metrics
|
1578 |
colors = ['blue', 'red', 'green', 'orange', 'purple', 'brown', 'pink', 'gray', 'cyan', 'magenta']
|
1579 |
|
1580 |
+
# Helper predicates
|
1581 |
+
def _is_eval_metric(name: str) -> bool:
|
1582 |
+
return name.startswith('eval_') or name.startswith('eval/')
|
1583 |
+
|
1584 |
+
def _is_system_metric(name: str) -> bool:
|
1585 |
+
import re
|
1586 |
+
if name in ("cpu_percent", "memory_percent"):
|
1587 |
+
return True
|
1588 |
+
return re.match(r"^gpu_\d+_(memory_allocated|memory_reserved|utilization)$", name) is not None
|
1589 |
+
|
1590 |
for i, metric in enumerate(numeric_cols):
|
1591 |
if metric in df.columns and not df[metric].isna().all():
|
1592 |
row = (i // n_cols) + 1
|
|
|
1596 |
# Clean steps for each subplot too
|
1597 |
try:
|
1598 |
df_sub = df.copy()
|
1599 |
+
use_time_axis = _is_system_metric(metric)
|
1600 |
+
if use_time_axis:
|
1601 |
+
df_sub['time'] = pd.to_datetime(df_sub.get('timestamp', ''), errors='coerce')
|
1602 |
+
if df_sub['time'].isna().all():
|
1603 |
+
df_sub['time'] = range(1, len(df_sub) + 1)
|
1604 |
+
df_sub.sort_values('time', inplace=True)
|
1605 |
+
# Filter to available metric points only to ensure connected lines
|
1606 |
+
metric_mask = df_sub[metric].notna()
|
1607 |
+
x_vals = df_sub.loc[metric_mask, 'time'].tolist()
|
1608 |
+
y_vals = df_sub.loc[metric_mask, metric].tolist()
|
1609 |
else:
|
1610 |
+
if 'step' not in df_sub or df_sub['step'].nunique() <= 1:
|
1611 |
+
for alt in ['train/global_step', 'global_step', 'train/step']:
|
1612 |
+
if alt in df_sub.columns and df_sub[alt].notna().any():
|
1613 |
+
df_sub['step'] = pd.to_numeric(df_sub[alt], errors='coerce')
|
1614 |
+
break
|
1615 |
+
if 'step' not in df_sub.columns or df_sub['step'].isna().all() or df_sub['step'].nunique() <= 1:
|
1616 |
+
df_sub['step'] = range(1, len(df_sub) + 1)
|
1617 |
+
else:
|
1618 |
+
df_sub['step'] = pd.to_numeric(df_sub.get('step', -1), errors='coerce').fillna(-1)
|
1619 |
+
df_sub.sort_values('step', inplace=True)
|
1620 |
+
# Filter to available metric points only to ensure connected lines
|
1621 |
+
metric_mask = df_sub[metric].notna()
|
1622 |
+
x_vals = df_sub.loc[metric_mask, 'step'].tolist()
|
1623 |
+
y_vals = df_sub.loc[metric_mask, metric].tolist()
|
1624 |
except Exception:
|
1625 |
df_sub = df
|
1626 |
+
metric_mask = df_sub[metric].notna() if metric in df_sub else []
|
1627 |
+
x_vals = df_sub.get('step', list(range(1, len(df_sub) + 1))).tolist()
|
1628 |
+
y_vals = df_sub.get(metric, []).tolist()
|
1629 |
fig.add_trace(
|
1630 |
go.Scatter(
|
1631 |
+
x=x_vals,
|
1632 |
+
y=y_vals,
|
1633 |
mode='lines+markers',
|
1634 |
name=metric,
|
1635 |
line=dict(width=2, color=color),
|
1636 |
marker=dict(size=4, color=color),
|
1637 |
showlegend=False,
|
1638 |
+
connectgaps=True if _is_eval_metric(metric) else False
|
1639 |
),
|
1640 |
row=row, col=col
|
1641 |
)
|
1642 |
+
# Set axis titles per subplot for clarity
|
1643 |
+
try:
|
1644 |
+
fig.update_xaxes(title_text=("Time" if use_time_axis else "Training Step"), row=row, col=col)
|
1645 |
+
except Exception:
|
1646 |
+
pass
|
1647 |
|
1648 |
fig.update_layout(
|
1649 |
title=f"All Metrics for Experiment {experiment_id}",
|
|
|
1740 |
plot_bgcolor='white', paper_bgcolor='white'
|
1741 |
)
|
1742 |
return fig
|
1743 |
+
|
1744 |
if not selected_metrics:
|
1745 |
fig = go.Figure()
|
1746 |
fig.add_annotation(
|
|
|
1754 |
plot_bgcolor='white', paper_bgcolor='white'
|
1755 |
)
|
1756 |
return fig
|
1757 |
+
|
1758 |
+
# Prepare dataframes for each selected experiment once
|
1759 |
+
experiment_to_dataframe = {}
|
1760 |
+
for experiment_id in selected_experiments:
|
1761 |
+
try:
|
1762 |
+
experiment_to_dataframe[experiment_id] = get_metrics_dataframe(experiment_id)
|
1763 |
+
except Exception:
|
1764 |
+
experiment_to_dataframe[experiment_id] = pd.DataFrame()
|
1765 |
+
|
1766 |
+
# Setup subplots: one subplot per selected metric
|
1767 |
+
from plotly.subplots import make_subplots
|
1768 |
+
|
1769 |
+
num_metrics = len(selected_metrics)
|
1770 |
+
num_columns = min(3, num_metrics)
|
1771 |
+
num_rows = (num_metrics + num_columns - 1) // num_columns
|
1772 |
+
|
1773 |
+
fig = make_subplots(
|
1774 |
+
rows=num_rows,
|
1775 |
+
cols=num_columns,
|
1776 |
+
subplot_titles=selected_metrics,
|
1777 |
+
vertical_spacing=0.05,
|
1778 |
+
horizontal_spacing=0.1
|
1779 |
+
)
|
1780 |
+
|
1781 |
+
# Color palette for experiments (consistent colors across subplots)
|
1782 |
+
try:
|
1783 |
+
palette = px.colors.qualitative.Plotly
|
1784 |
+
except Exception:
|
1785 |
+
palette = [
|
1786 |
+
'blue', 'red', 'green', 'orange', 'purple', 'brown',
|
1787 |
+
'pink', 'gray', 'cyan', 'magenta'
|
1788 |
+
]
|
1789 |
+
experiment_to_color = {
|
1790 |
+
exp_id: palette[idx % len(palette)] for idx, exp_id in enumerate(selected_experiments)
|
1791 |
+
}
|
1792 |
+
|
1793 |
+
# Helper predicates (match logic used elsewhere in this file)
|
1794 |
+
def _is_eval_metric(name: str) -> bool:
|
1795 |
+
return name.startswith('eval_') or name.startswith('eval/')
|
1796 |
+
|
1797 |
+
def _is_system_metric(name: str) -> bool:
|
1798 |
+
import re
|
1799 |
+
if name in ("cpu_percent", "memory_percent"):
|
1800 |
+
return True
|
1801 |
+
return re.match(r"^gpu_\d+_(memory_allocated|memory_reserved|utilization)$", name) is not None
|
1802 |
+
|
1803 |
+
any_trace_added = False
|
1804 |
+
|
1805 |
+
for metric_index, metric_name in enumerate(selected_metrics):
|
1806 |
+
row = (metric_index // num_columns) + 1
|
1807 |
+
col = (metric_index % num_columns) + 1
|
1808 |
+
|
1809 |
+
subplot_has_data = False
|
1810 |
+
|
1811 |
+
for experiment_id, df in experiment_to_dataframe.items():
|
1812 |
+
if df is None or df.empty or metric_name not in df.columns:
|
1813 |
+
continue
|
1814 |
+
|
1815 |
+
# Build x/y based on metric type
|
1816 |
+
try:
|
1817 |
+
df_local = df.copy()
|
1818 |
+
use_time_axis = _is_system_metric(metric_name)
|
1819 |
+
|
1820 |
+
if use_time_axis:
|
1821 |
+
# Time axis: use timestamp → datetime
|
1822 |
+
df_local['time'] = pd.to_datetime(df_local.get('timestamp', ''), errors='coerce')
|
1823 |
+
if df_local['time'].isna().all():
|
1824 |
+
df_local['time'] = range(1, len(df_local) + 1)
|
1825 |
+
df_local.sort_values('time', inplace=True)
|
1826 |
+
valid_mask = df_local[metric_name].notna()
|
1827 |
+
x_values = df_local.loc[valid_mask, 'time'].tolist()
|
1828 |
+
y_values = df_local.loc[valid_mask, metric_name].tolist()
|
1829 |
+
else:
|
1830 |
+
# Step axis: ensure a reasonable step column exists
|
1831 |
+
if 'step' not in df_local or df_local['step'].nunique() <= 1:
|
1832 |
+
for alternative in ['train/global_step', 'global_step', 'train/step']:
|
1833 |
+
if alternative in df_local.columns and df_local[alternative].notna().any():
|
1834 |
+
df_local['step'] = pd.to_numeric(df_local[alternative], errors='coerce')
|
1835 |
+
break
|
1836 |
+
if 'step' not in df_local.columns or df_local['step'].isna().all() or df_local['step'].nunique() <= 1:
|
1837 |
+
df_local['step'] = range(1, len(df_local) + 1)
|
1838 |
+
else:
|
1839 |
+
df_local['step'] = pd.to_numeric(df_local.get('step', -1), errors='coerce').fillna(-1)
|
1840 |
+
df_local.sort_values('step', inplace=True)
|
1841 |
+
valid_mask = df_local[metric_name].notna()
|
1842 |
+
x_values = df_local.loc[valid_mask, 'step'].tolist()
|
1843 |
+
y_values = df_local.loc[valid_mask, metric_name].tolist()
|
1844 |
+
except Exception:
|
1845 |
+
# Fallback to naive arrays
|
1846 |
+
valid_mask = df[metric_name].notna()
|
1847 |
+
x_values = df.loc[valid_mask, 'step'].tolist() if 'step' in df.columns else list(range(1, len(df) + 1))
|
1848 |
+
y_values = df.loc[valid_mask, metric_name].tolist() if metric_name in df.columns else []
|
1849 |
+
|
1850 |
+
if not x_values or not y_values:
|
1851 |
+
continue
|
1852 |
+
|
1853 |
+
subplot_has_data = True
|
1854 |
+
any_trace_added = True
|
1855 |
+
color = experiment_to_color.get(experiment_id, 'blue')
|
1856 |
+
|
1857 |
+
fig.add_trace(
|
1858 |
+
go.Scatter(
|
1859 |
+
x=x_values,
|
1860 |
+
y=y_values,
|
1861 |
+
mode='lines+markers',
|
1862 |
+
name=experiment_id,
|
1863 |
+
line=dict(width=2, color=color),
|
1864 |
+
marker=dict(size=4, color=color),
|
1865 |
+
showlegend=True,
|
1866 |
+
connectgaps=True if _is_eval_metric(metric_name) else False
|
1867 |
+
),
|
1868 |
+
row=row,
|
1869 |
+
col=col
|
1870 |
+
)
|
1871 |
+
|
1872 |
+
# Axis titles per subplot
|
1873 |
+
try:
|
1874 |
+
fig.update_xaxes(
|
1875 |
+
title_text=("Time" if _is_system_metric(metric_name) else "Training Step"),
|
1876 |
+
row=row,
|
1877 |
+
col=col
|
1878 |
+
)
|
1879 |
+
fig.update_yaxes(title_text=metric_name, row=row, col=col)
|
1880 |
+
except Exception:
|
1881 |
+
pass
|
1882 |
+
|
1883 |
+
# If no experiment had data for this metric, annotate the subplot
|
1884 |
+
if not subplot_has_data:
|
1885 |
+
try:
|
1886 |
+
fig.add_annotation(
|
1887 |
+
text=f"No data for metric: {metric_name}",
|
1888 |
+
xref="paper", yref="paper",
|
1889 |
+
x=0.5, y=0.5, showarrow=False,
|
1890 |
+
font=dict(size=12, color="gray"),
|
1891 |
+
row=row, col=col
|
1892 |
+
)
|
1893 |
+
except Exception:
|
1894 |
+
fig.add_annotation(
|
1895 |
+
text=f"No data for metric: {metric_name}",
|
1896 |
+
xref="paper", yref="paper",
|
1897 |
+
x=0.5, y=0.5, showarrow=False,
|
1898 |
+
font=dict(size=12, color="gray")
|
1899 |
+
)
|
1900 |
+
|
1901 |
+
fig.update_layout(
|
1902 |
+
title="Experiment Comparison",
|
1903 |
+
height=max(350, 320 * num_rows),
|
1904 |
+
plot_bgcolor='white',
|
1905 |
+
paper_bgcolor='white',
|
1906 |
+
hovermode='x unified',
|
1907 |
+
legend=dict(orientation='h', yanchor='bottom', y=1.02, xanchor='right', x=1)
|
1908 |
+
)
|
1909 |
+
|
1910 |
+
# Grid lines for all subplots
|
1911 |
+
for r in range(1, num_rows + 1):
|
1912 |
+
for c in range(1, num_columns + 1):
|
1913 |
+
fig.update_xaxes(showgrid=True, gridwidth=1, gridcolor='lightgray', row=r, col=c)
|
1914 |
+
fig.update_yaxes(showgrid=True, gridwidth=1, gridcolor='lightgray', row=r, col=c)
|
1915 |
+
|
1916 |
+
if not any_trace_added:
|
1917 |
+
# Overall annotation if literally nothing to plot
|
1918 |
+
fig = go.Figure()
|
1919 |
+
fig.add_annotation(
|
1920 |
+
text="No comparable data available for the selected experiments/metrics",
|
1921 |
+
xref="paper", yref="paper",
|
1922 |
+
x=0.5, y=0.5, showarrow=False,
|
1923 |
+
font=dict(size=16, color="orange")
|
1924 |
+
)
|
1925 |
+
fig.update_layout(
|
1926 |
+
title="No Data",
|
1927 |
+
plot_bgcolor='white', paper_bgcolor='white'
|
1928 |
+
)
|
1929 |
+
|
1930 |
+
return fig
|
1931 |
|
1932 |
except Exception as e:
|
1933 |
logger.error(f"Error creating comparison from selection: {str(e)}")
|