Spaces:
Running
Running
adds memory optimized configuration
Browse files- config/train_gpt_oss_memory_optimized.py +144 -0
- launch.sh +21 -2
- requirements/requirements_core.txt +2 -1
- scripts/training/train_gpt_oss.py +15 -5
config/train_gpt_oss_memory_optimized.py
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
GPT-OSS Memory Optimized Training Configuration
|
3 |
+
Based on OpenAI's GPT-OSS fine-tuning tutorial
|
4 |
+
Optimized for limited GPU memory (40-80GB)
|
5 |
+
"""
|
6 |
+
import os
|
7 |
+
from dataclasses import dataclass
|
8 |
+
from typing import Optional
|
9 |
+
|
10 |
+
@dataclass
|
11 |
+
class GPTOSSMemoryOptimizedConfig:
|
12 |
+
"""Memory-optimized configuration for GPT-OSS fine-tuning"""
|
13 |
+
trainer_type: str = "sft"
|
14 |
+
model_name: str = "openai/gpt-oss-20b"
|
15 |
+
max_seq_length: int = 1024 # Reduced from 4096
|
16 |
+
use_flash_attention: bool = True
|
17 |
+
use_gradient_checkpointing: bool = True
|
18 |
+
batch_size: int = 1 # Reduced from 8
|
19 |
+
gradient_accumulation_steps: int = 16 # Increased to maintain effective batch size
|
20 |
+
learning_rate: float = 2e-4
|
21 |
+
weight_decay: float = 0.01
|
22 |
+
warmup_steps: int = 50
|
23 |
+
max_iters: int = 500 # Reduced for faster testing
|
24 |
+
eval_interval: int = 50
|
25 |
+
log_interval: int = 5
|
26 |
+
save_interval: int = 100
|
27 |
+
optimizer: str = "adamw_torch"
|
28 |
+
beta1: float = 0.9
|
29 |
+
beta2: float = 0.95
|
30 |
+
eps: float = 1e-8
|
31 |
+
scheduler: str = "cosine_with_min_lr"
|
32 |
+
min_lr: float = 2e-5
|
33 |
+
lr_scheduler_kwargs: dict = None
|
34 |
+
fp16: bool = False
|
35 |
+
bf16: bool = True
|
36 |
+
ddp_backend: str = "nccl"
|
37 |
+
ddp_find_unused_parameters: bool = False
|
38 |
+
save_steps: int = 100
|
39 |
+
eval_steps: int = 50
|
40 |
+
logging_steps: int = 5
|
41 |
+
save_total_limit: Optional[int] = 2
|
42 |
+
eval_strategy: str = "steps"
|
43 |
+
metric_for_best_model: str = "eval_loss"
|
44 |
+
greater_is_better: bool = False
|
45 |
+
load_best_model_at_end: bool = True
|
46 |
+
dataset_name: str = "HuggingFaceH4/Multilingual-Thinking"
|
47 |
+
dataset_split: str = "train"
|
48 |
+
input_field: str = "messages"
|
49 |
+
target_field: str = None
|
50 |
+
filter_bad_entries: bool = False
|
51 |
+
bad_entry_field: str = "bad_entry"
|
52 |
+
use_chat_template: bool = True
|
53 |
+
chat_template_kwargs: dict = None
|
54 |
+
enable_tracking: bool = True
|
55 |
+
trackio_url: Optional[str] = None
|
56 |
+
trackio_token: Optional[str] = None
|
57 |
+
log_artifacts: bool = True
|
58 |
+
log_metrics: bool = True
|
59 |
+
log_config: bool = True
|
60 |
+
experiment_name: Optional[str] = None
|
61 |
+
hf_token: Optional[str] = None
|
62 |
+
dataset_repo: Optional[str] = None
|
63 |
+
use_lora: bool = True
|
64 |
+
lora_config: dict = None
|
65 |
+
use_quantization: bool = True
|
66 |
+
quantization_config: dict = None
|
67 |
+
model_kwargs: dict = None
|
68 |
+
generation_config: dict = None
|
69 |
+
reasoning_languages: list = None
|
70 |
+
|
71 |
+
def __post_init__(self):
|
72 |
+
"""Set default values for complex fields"""
|
73 |
+
if self.lora_config is None:
|
74 |
+
self.lora_config = {
|
75 |
+
"r": 4, # Reduced from 16
|
76 |
+
"lora_alpha": 8, # Reduced from 32
|
77 |
+
"target_modules": "all-linear",
|
78 |
+
"target_parameters": [
|
79 |
+
"7.mlp.experts.gate_up_proj",
|
80 |
+
"7.mlp.experts.down_proj",
|
81 |
+
"15.mlp.experts.gate_up_proj",
|
82 |
+
"15.mlp.experts.down_proj",
|
83 |
+
"23.mlp.experts.gate_up_proj",
|
84 |
+
"23.mlp.experts.down_proj",
|
85 |
+
],
|
86 |
+
"bias": "none",
|
87 |
+
"task_type": "CAUSAL_LM"
|
88 |
+
}
|
89 |
+
|
90 |
+
if self.quantization_config is None:
|
91 |
+
self.quantization_config = {
|
92 |
+
"dequantize": True,
|
93 |
+
"load_in_4bit": True,
|
94 |
+
"bnb_4bit_compute_dtype": "bfloat16",
|
95 |
+
"bnb_4bit_use_double_quant": True,
|
96 |
+
"bnb_4bit_quant_type": "nf4"
|
97 |
+
}
|
98 |
+
|
99 |
+
if self.model_kwargs is None:
|
100 |
+
self.model_kwargs = {
|
101 |
+
"attn_implementation": "eager",
|
102 |
+
"torch_dtype": "auto",
|
103 |
+
"use_cache": False,
|
104 |
+
"device_map": "auto",
|
105 |
+
"low_cpu_mem_usage": True,
|
106 |
+
"max_memory": {0: "75GB"}, # Reserve some memory
|
107 |
+
}
|
108 |
+
|
109 |
+
if self.generation_config is None:
|
110 |
+
self.generation_config = {
|
111 |
+
"max_new_tokens": 256, # Reduced from 512
|
112 |
+
"do_sample": True,
|
113 |
+
"temperature": 0.6,
|
114 |
+
"top_p": 0.9,
|
115 |
+
"repetition_penalty": 1.1
|
116 |
+
}
|
117 |
+
|
118 |
+
if self.reasoning_languages is None:
|
119 |
+
self.reasoning_languages = [
|
120 |
+
"English", "Spanish", "French", "Italian", "German",
|
121 |
+
"Chinese", "Hindi", "Japanese", "Korean", "Arabic"
|
122 |
+
]
|
123 |
+
|
124 |
+
if self.lr_scheduler_kwargs is None:
|
125 |
+
self.lr_scheduler_kwargs = {"min_lr_rate": 0.1}
|
126 |
+
|
127 |
+
if self.chat_template_kwargs is None:
|
128 |
+
self.chat_template_kwargs = {
|
129 |
+
"add_generation_prompt": True,
|
130 |
+
"tokenize": False,
|
131 |
+
"auto_insert_role": True
|
132 |
+
}
|
133 |
+
|
134 |
+
# Print memory optimization stats
|
135 |
+
effective_batch_size = self.batch_size * self.gradient_accumulation_steps
|
136 |
+
print("=== GPT-OSS Memory Optimized Configuration ===")
|
137 |
+
print(f"Effective batch size: {effective_batch_size}")
|
138 |
+
print(f"Max sequence length: {self.max_seq_length}")
|
139 |
+
print(f"LoRA rank: {self.lora_config['r']}")
|
140 |
+
print(f"Gradient accumulation steps: {self.gradient_accumulation_steps}")
|
141 |
+
print(f"Memory optimization: Enabled")
|
142 |
+
print(f"Quantization: {self.quantization_config}")
|
143 |
+
print(f"Max memory per GPU: {self.model_kwargs.get('max_memory', 'Auto')}")
|
144 |
+
print("==================================================")
|
launch.sh
CHANGED
@@ -225,7 +225,16 @@ show_training_configs() {
|
|
225 |
echo " - Specialized for reasoning tasks"
|
226 |
echo " - Supports 10+ languages"
|
227 |
echo ""
|
228 |
-
echo "8.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
229 |
echo " - User-defined parameters"
|
230 |
echo ""
|
231 |
}
|
@@ -306,6 +315,16 @@ get_training_config() {
|
|
306 |
MAX_SEQ_LENGTH=2048
|
307 |
CONFIG_FILE="config/train_gpt_oss_multilingual_reasoning.py"
|
308 |
;;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
309 |
"Custom Configuration")
|
310 |
get_custom_config
|
311 |
;;
|
@@ -478,7 +497,7 @@ print_step "Step 2: Training Configuration"
|
|
478 |
echo "=================================="
|
479 |
|
480 |
show_training_configs
|
481 |
-
select_option "Select training configuration:" "Basic Training" "H100 Lightweight (Rapid)" "A100 Large Scale" "Multiple Passes" "GPT-OSS Basic Training" "GPT-OSS H100 Optimized" "GPT-OSS Multilingual Reasoning" "Custom Configuration" TRAINING_CONFIG_TYPE
|
482 |
|
483 |
get_training_config "$TRAINING_CONFIG_TYPE"
|
484 |
|
|
|
225 |
echo " - Specialized for reasoning tasks"
|
226 |
echo " - Supports 10+ languages"
|
227 |
echo ""
|
228 |
+
echo "8. GPT-OSS Memory Optimized"
|
229 |
+
echo " - Model: openai/gpt-oss-20b"
|
230 |
+
echo " - Dataset: Multilingual-Thinking"
|
231 |
+
echo " - Epochs: 1"
|
232 |
+
echo " - Batch Size: 1 (effective 16 with accumulation)"
|
233 |
+
echo " - Learning Rate: 2e-4"
|
234 |
+
echo " - 4-bit quantization + reduced LoRA"
|
235 |
+
echo " - Optimized for limited GPU memory"
|
236 |
+
echo ""
|
237 |
+
echo "9. Custom Configuration"
|
238 |
echo " - User-defined parameters"
|
239 |
echo ""
|
240 |
}
|
|
|
315 |
MAX_SEQ_LENGTH=2048
|
316 |
CONFIG_FILE="config/train_gpt_oss_multilingual_reasoning.py"
|
317 |
;;
|
318 |
+
"GPT-OSS Memory Optimized")
|
319 |
+
MODEL_NAME="openai/gpt-oss-20b"
|
320 |
+
DATASET_NAME="HuggingFaceH4/Multilingual-Thinking"
|
321 |
+
MAX_EPOCHS=1
|
322 |
+
BATCH_SIZE=1
|
323 |
+
GRADIENT_ACCUMULATION_STEPS=16
|
324 |
+
LEARNING_RATE=2e-4
|
325 |
+
MAX_SEQ_LENGTH=1024
|
326 |
+
CONFIG_FILE="config/train_gpt_oss_memory_optimized.py"
|
327 |
+
;;
|
328 |
"Custom Configuration")
|
329 |
get_custom_config
|
330 |
;;
|
|
|
497 |
echo "=================================="
|
498 |
|
499 |
show_training_configs
|
500 |
+
select_option "Select training configuration:" "Basic Training" "H100 Lightweight (Rapid)" "A100 Large Scale" "Multiple Passes" "GPT-OSS Basic Training" "GPT-OSS H100 Optimized" "GPT-OSS Multilingual Reasoning" "GPT-OSS Memory Optimized" "Custom Configuration" TRAINING_CONFIG_TYPE
|
501 |
|
502 |
get_training_config "$TRAINING_CONFIG_TYPE"
|
503 |
|
requirements/requirements_core.txt
CHANGED
@@ -20,4 +20,5 @@ pynvml>=12.0.0
|
|
20 |
|
21 |
# GPT-OSS specific dependencies
|
22 |
# Note: GPT-OSS requires specific versions for optimal performance
|
23 |
-
# These are compatible with the tutorial requirements
|
|
|
|
20 |
|
21 |
# GPT-OSS specific dependencies
|
22 |
# Note: GPT-OSS requires specific versions for optimal performance
|
23 |
+
# These are compatible with the tutorial requirements
|
24 |
+
bitsandbytes>=0.41.0 # For 4-bit quantization
|
scripts/training/train_gpt_oss.py
CHANGED
@@ -23,10 +23,20 @@ def load_gpt_oss_model_and_tokenizer(config):
|
|
23 |
print("Loading GPT-OSS model with quantization...")
|
24 |
|
25 |
# Import quantization config
|
26 |
-
from transformers import
|
27 |
-
|
28 |
-
# Set up quantization config
|
29 |
-
quantization_config
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
# Model kwargs as per tutorial
|
32 |
model_kwargs = {
|
@@ -144,7 +154,7 @@ def train_gpt_oss(config_path, experiment_name, output_dir, trackio_url, trainer
|
|
144 |
# Try to find a config class
|
145 |
for attr_name in dir(config_module):
|
146 |
attr = getattr(config_module, attr_name)
|
147 |
-
if hasattr(attr, 'model_name') and 'gpt_oss' in attr.model_name.lower():
|
148 |
config = attr
|
149 |
break
|
150 |
else:
|
|
|
23 |
print("Loading GPT-OSS model with quantization...")
|
24 |
|
25 |
# Import quantization config
|
26 |
+
from transformers import BitsAndBytesConfig
|
27 |
+
|
28 |
+
# Set up quantization config based on config
|
29 |
+
if config.quantization_config and config.quantization_config.get("load_in_4bit"):
|
30 |
+
# Use BitsAndBytesConfig for 4-bit quantization
|
31 |
+
quantization_config = BitsAndBytesConfig(
|
32 |
+
load_in_4bit=True,
|
33 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
34 |
+
bnb_4bit_use_double_quant=True,
|
35 |
+
bnb_4bit_quant_type="nf4"
|
36 |
+
)
|
37 |
+
else:
|
38 |
+
# Use BitsAndBytesConfig as default (no quantization)
|
39 |
+
quantization_config = None
|
40 |
|
41 |
# Model kwargs as per tutorial
|
42 |
model_kwargs = {
|
|
|
154 |
# Try to find a config class
|
155 |
for attr_name in dir(config_module):
|
156 |
attr = getattr(config_module, attr_name)
|
157 |
+
if hasattr(attr, 'model_name') and ('gpt_oss' in attr.model_name.lower() or 'GPTOSS' in attr_name):
|
158 |
config = attr
|
159 |
break
|
160 |
else:
|