Spaces:
Running
Running
adds more documentation
Browse files- .cursorrules +277 -0
- .gitignore +2 -1
.cursorrules
ADDED
@@ -0,0 +1,277 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
description: SmolLM3 Fine-tuning Pipeline - Project Rules and Conventions
|
3 |
+
globs: ["**/*.py", "**/*.sh", "**/*.md", "**/*.json"]
|
4 |
+
alwaysApply: true
|
5 |
+
---
|
6 |
+
|
7 |
+
# SmolLM3 Fine-tuning Pipeline Project Rules
|
8 |
+
|
9 |
+
## Project Overview
|
10 |
+
This is a comprehensive end-to-end fine-tuning pipeline for SmolLM3 models with Trackio monitoring, Hugging Face integration, and interactive configuration management.
|
11 |
+
|
12 |
+
## Core Architecture
|
13 |
+
|
14 |
+
### Directory Structure
|
15 |
+
- `config/` - Training configuration files for different scenarios
|
16 |
+
- `src/` - Core training and model logic
|
17 |
+
- `scripts/` - Utility scripts for deployment, dataset management, and model pushing
|
18 |
+
- `docs/` - Comprehensive documentation and guides
|
19 |
+
- `templates/` - Templates for HF Spaces and datasets
|
20 |
+
- `tests/` - Test files and debugging scripts
|
21 |
+
- `outputs/` - Training outputs and checkpoints
|
22 |
+
|
23 |
+
### Key Components
|
24 |
+
|
25 |
+
#### Training Configurations
|
26 |
+
- **Basic Training**: SmolLM3-3B + OpenHermes-FR, 3 epochs, batch size 2
|
27 |
+
- **H100 Lightweight**: SmolLM3-3B + OpenHermes-FR (80K samples), 1 epoch, batch size 16
|
28 |
+
- **A100 Large Scale**: SmolLM3-3B + OpenHermes-FR, 1.3 passes, batch size 8
|
29 |
+
- **Multiple Passes**: SmolLM3-3B + OpenHermes-FR, 4 epochs, batch size 6
|
30 |
+
- **Custom Configuration**: User-defined parameters
|
31 |
+
|
32 |
+
#### Core Modules
|
33 |
+
- `src/train.py` - Main training orchestration
|
34 |
+
- `src/model.py` - Model loading and configuration
|
35 |
+
- `src/data.py` - Dataset processing and loading
|
36 |
+
- `src/monitoring.py` - Trackio integration and metrics
|
37 |
+
- `src/trainer.py` - Training loop and optimization
|
38 |
+
|
39 |
+
## Coding Conventions
|
40 |
+
|
41 |
+
### Python Style
|
42 |
+
- Use type hints for all function parameters and return values
|
43 |
+
- Follow PEP 8 for formatting
|
44 |
+
- Use descriptive variable names in snake_case
|
45 |
+
- Add comprehensive docstrings for all functions
|
46 |
+
- Use f-strings for string formatting
|
47 |
+
|
48 |
+
### Configuration Management
|
49 |
+
- All training configs inherit from `SmolLM3Config` base class
|
50 |
+
- Use dataclasses for configuration objects
|
51 |
+
- Validate configuration parameters in __post_init__
|
52 |
+
- Support both YAML and Python configuration files
|
53 |
+
|
54 |
+
### Error Handling
|
55 |
+
- Use try-except blocks for external API calls (HF, Trackio)
|
56 |
+
- Log errors with appropriate context
|
57 |
+
- Provide user-friendly error messages
|
58 |
+
- Implement graceful degradation for optional features
|
59 |
+
|
60 |
+
### Monitoring Integration
|
61 |
+
- Always include Trackio URL and experiment name in configs
|
62 |
+
- Log metrics every N steps (configurable)
|
63 |
+
- Save checkpoints and artifacts to HF Datasets
|
64 |
+
- Use structured logging with consistent field names
|
65 |
+
|
66 |
+
## File Naming Conventions
|
67 |
+
|
68 |
+
### Configuration Files
|
69 |
+
- `train_smollm3_*.py` - Training configurations
|
70 |
+
- `*_config.py` - General configuration files
|
71 |
+
- Use descriptive suffixes: `_h100_lightweight`, `_a100_large`, `_multiple_passes`
|
72 |
+
|
73 |
+
### Script Files
|
74 |
+
- `deploy_*.py` - Deployment scripts
|
75 |
+
- `setup_*.py` - Setup and initialization scripts
|
76 |
+
- `push_*.py` - Model pushing scripts
|
77 |
+
- `configure_*.py` - Configuration scripts
|
78 |
+
|
79 |
+
### Test Files
|
80 |
+
- `test_*.py` - Test files
|
81 |
+
- `debug_*.py` - Debugging scripts
|
82 |
+
- Include descriptive names indicating what they test
|
83 |
+
|
84 |
+
## Training Pipeline Workflow
|
85 |
+
|
86 |
+
### Interactive Pipeline (`launch.sh`)
|
87 |
+
1. **Authentication**: HF username and token validation
|
88 |
+
2. **Configuration Selection**: Choose from predefined configs or custom
|
89 |
+
3. **Experiment Setup**: Configure experiment name and repositories
|
90 |
+
4. **Environment Setup**: Install dependencies and setup virtual environment
|
91 |
+
5. **Deployment**: Deploy Trackio Space and setup HF Dataset
|
92 |
+
6. **Training**: Execute training with monitoring
|
93 |
+
7. **Model Push**: Upload model to HF Hub with documentation
|
94 |
+
8. **Testing**: Validate uploaded model functionality
|
95 |
+
|
96 |
+
### Configuration Selection Logic
|
97 |
+
- Basic Training: Default for beginners and learning
|
98 |
+
- H100 Lightweight: Rapid experiments on H100 GPUs
|
99 |
+
- A100 Large Scale: Serious research and production
|
100 |
+
- Multiple Passes: Thorough training for production models
|
101 |
+
- Custom: User-defined parameters for specific needs
|
102 |
+
|
103 |
+
## Dataset Management
|
104 |
+
|
105 |
+
### Supported Formats
|
106 |
+
- Hugging Face Datasets format
|
107 |
+
- JSON files with prompt/completion pairs
|
108 |
+
- Chat format with messages array
|
109 |
+
- Custom formats with conversion functions
|
110 |
+
|
111 |
+
### Dataset Processing
|
112 |
+
- Automatic format detection and conversion
|
113 |
+
- Random sampling for lightweight configurations
|
114 |
+
- Validation split creation
|
115 |
+
- Bad entry filtering and handling
|
116 |
+
|
117 |
+
### Dataset Sampling (H100 Lightweight)
|
118 |
+
- 80,000 random samples from OpenHermes-FR
|
119 |
+
- 1,000 validation samples (if available)
|
120 |
+
- Fixed random seed (42) for reproducibility
|
121 |
+
- Automatic sampling during dataset preparation
|
122 |
+
|
123 |
+
## Model Management
|
124 |
+
|
125 |
+
### Model Loading
|
126 |
+
- Support for HuggingFaceTB/SmolLM3-3B
|
127 |
+
- Flash attention and gradient checkpointing
|
128 |
+
- Mixed precision training (fp16/bf16)
|
129 |
+
- Device mapping and memory optimization
|
130 |
+
|
131 |
+
### Model Pushing
|
132 |
+
- Comprehensive model cards with training details
|
133 |
+
- Automatic README generation
|
134 |
+
- License and usage information
|
135 |
+
- Training metrics and configuration
|
136 |
+
|
137 |
+
## Monitoring and Tracking
|
138 |
+
|
139 |
+
### Trackio Integration
|
140 |
+
- Real-time metrics logging
|
141 |
+
- Training curves visualization
|
142 |
+
- Resource usage monitoring
|
143 |
+
- Artifact storage and versioning
|
144 |
+
|
145 |
+
### Metrics to Track
|
146 |
+
- Training and validation loss
|
147 |
+
- Learning rate schedule
|
148 |
+
- Gradient norms
|
149 |
+
- GPU utilization and memory
|
150 |
+
- Training speed (steps/second)
|
151 |
+
|
152 |
+
## Error Handling and Validation
|
153 |
+
|
154 |
+
### Input Validation
|
155 |
+
- Validate HF tokens before use
|
156 |
+
- Check CUDA availability
|
157 |
+
- Verify dataset accessibility
|
158 |
+
- Validate configuration parameters
|
159 |
+
|
160 |
+
### Error Recovery
|
161 |
+
- Graceful handling of network issues
|
162 |
+
- Automatic retry for failed operations
|
163 |
+
- Checkpoint recovery for interrupted training
|
164 |
+
- Fallback options for optional features
|
165 |
+
|
166 |
+
## Documentation Standards
|
167 |
+
|
168 |
+
### README Files
|
169 |
+
- Clear project description
|
170 |
+
- Installation instructions
|
171 |
+
- Usage examples
|
172 |
+
- Configuration options
|
173 |
+
- Troubleshooting guide
|
174 |
+
|
175 |
+
### Code Documentation
|
176 |
+
- Comprehensive docstrings
|
177 |
+
- Type hints for all functions
|
178 |
+
- Example usage in docstrings
|
179 |
+
- Parameter descriptions
|
180 |
+
- Return value documentation
|
181 |
+
|
182 |
+
## Testing and Validation
|
183 |
+
|
184 |
+
### Test Categories
|
185 |
+
- Unit tests for core functions
|
186 |
+
- Integration tests for pipeline
|
187 |
+
- Configuration validation tests
|
188 |
+
- Model loading and saving tests
|
189 |
+
- Dataset processing tests
|
190 |
+
|
191 |
+
### Debugging Tools
|
192 |
+
- Standalone test scripts
|
193 |
+
- Configuration validation
|
194 |
+
- Model testing utilities
|
195 |
+
- Dataset inspection tools
|
196 |
+
|
197 |
+
## Performance Optimization
|
198 |
+
|
199 |
+
### H100 Optimizations
|
200 |
+
- Larger batch sizes (16 vs 8 for A100)
|
201 |
+
- Reduced gradient accumulation (4 vs 16)
|
202 |
+
- Higher learning rates (8e-6 vs 5e-6)
|
203 |
+
- Optimized data loading (4 workers, pin memory)
|
204 |
+
|
205 |
+
### Memory Management
|
206 |
+
- Gradient checkpointing for large models
|
207 |
+
- Mixed precision training
|
208 |
+
- Dynamic batch sizing
|
209 |
+
- Memory-efficient data loading
|
210 |
+
|
211 |
+
## Security and Best Practices
|
212 |
+
|
213 |
+
### Token Management
|
214 |
+
- Never hardcode tokens in code
|
215 |
+
- Use environment variables
|
216 |
+
- Validate tokens before use
|
217 |
+
- Secure token storage
|
218 |
+
|
219 |
+
### Data Privacy
|
220 |
+
- Filter sensitive data from datasets
|
221 |
+
- Validate dataset contents
|
222 |
+
- Secure data transmission
|
223 |
+
- Proper data disposal
|
224 |
+
|
225 |
+
## Deployment and CI/CD
|
226 |
+
|
227 |
+
### Environment Setup
|
228 |
+
- Python virtual environments
|
229 |
+
- CUDA-compatible PyTorch
|
230 |
+
- Required dependencies installation
|
231 |
+
- System package management
|
232 |
+
|
233 |
+
### Automated Deployment
|
234 |
+
- Trackio Space deployment
|
235 |
+
- HF Dataset setup
|
236 |
+
- Model repository creation
|
237 |
+
- Configuration file generation
|
238 |
+
|
239 |
+
## Troubleshooting Guidelines
|
240 |
+
|
241 |
+
### Common Issues
|
242 |
+
- CUDA out of memory: Reduce batch size
|
243 |
+
- Network timeouts: Check internet connection
|
244 |
+
- Token validation: Verify HF token permissions
|
245 |
+
- Dataset loading: Check dataset accessibility
|
246 |
+
|
247 |
+
### Debugging Steps
|
248 |
+
1. Check system requirements
|
249 |
+
2. Validate configuration
|
250 |
+
3. Test individual components
|
251 |
+
4. Review logs and error messages
|
252 |
+
5. Verify external service connectivity
|
253 |
+
|
254 |
+
## Future Enhancements
|
255 |
+
|
256 |
+
### Planned Features
|
257 |
+
- Multi-GPU training support
|
258 |
+
- Advanced dataset sampling strategies
|
259 |
+
- Automated hyperparameter optimization
|
260 |
+
- Enhanced monitoring and visualization
|
261 |
+
- Support for additional model architectures
|
262 |
+
|
263 |
+
### Extensibility
|
264 |
+
- Modular configuration system
|
265 |
+
- Plugin architecture for custom features
|
266 |
+
- Support for custom datasets and models
|
267 |
+
- Flexible monitoring integration
|
268 |
+
|
269 |
+
---
|
270 |
+
|
271 |
+
**When working with this codebase:**
|
272 |
+
- Always consider the end-to-end pipeline workflow
|
273 |
+
- Follow the established configuration patterns
|
274 |
+
- Include proper error handling and validation
|
275 |
+
- Maintain comprehensive documentation
|
276 |
+
- Test changes thoroughly before deployment
|
277 |
+
- Consider performance implications for different hardware configurations
|
.gitignore
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
-
.
|
|
|
2 |
*.mdc
|
3 |
|
4 |
# Python
|
|
|
1 |
+
.cursor/
|
2 |
+
.cursor/rules/
|
3 |
*.mdc
|
4 |
|
5 |
# Python
|