Spaces:
Running
Running
solves oom error with more reasonable configuration
Browse files
config/train_smollm3_openhermes_fr_a100_balanced.py
ADDED
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
SmolLM3 Training Configuration for OpenHermes-FR Dataset - A100 Balanced
|
3 |
+
Optimized for good GPU utilization without running out of memory
|
4 |
+
"""
|
5 |
+
|
6 |
+
import os
|
7 |
+
from dataclasses import dataclass
|
8 |
+
from typing import Optional
|
9 |
+
from config.train_smollm3 import SmolLM3Config
|
10 |
+
|
11 |
+
@dataclass
|
12 |
+
class SmolLM3ConfigOpenHermesFRBalanced(SmolLM3Config):
|
13 |
+
"""Configuration for SmolLM3 fine-tuning with balanced A100 performance"""
|
14 |
+
|
15 |
+
# Model configuration - balanced for A100
|
16 |
+
model_name: str = "HuggingFaceTB/SmolLM3-3B"
|
17 |
+
max_seq_length: int = 12288 # Increased but not too much
|
18 |
+
use_flash_attention: bool = True
|
19 |
+
use_gradient_checkpointing: bool = False # Disabled for A100 efficiency
|
20 |
+
|
21 |
+
# Training configuration - Balanced GPU utilization
|
22 |
+
batch_size: int = 8 # Moderate increase
|
23 |
+
gradient_accumulation_steps: int = 16 # Effective batch size = 8 * 16 = 128
|
24 |
+
learning_rate: float = 3.5e-6 # Slightly higher for larger effective batch
|
25 |
+
weight_decay: float = 0.01
|
26 |
+
warmup_steps: int = 1200 # More warmup for larger batch
|
27 |
+
max_iters: int = 18000 # More iterations for faster convergence
|
28 |
+
eval_interval: int = 1000 # Less frequent evaluation
|
29 |
+
log_interval: int = 25 # Less frequent logging
|
30 |
+
save_interval: int = 2000 # Less frequent saving
|
31 |
+
|
32 |
+
# Optimizer configuration - optimized for large batches
|
33 |
+
optimizer: str = "adamw_torch"
|
34 |
+
beta1: float = 0.9
|
35 |
+
beta2: float = 0.999 # Higher beta2 for stability
|
36 |
+
eps: float = 1e-8
|
37 |
+
|
38 |
+
# Scheduler configuration - faster training
|
39 |
+
scheduler: str = "cosine"
|
40 |
+
min_lr: float = 3.5e-7 # Lower min LR
|
41 |
+
|
42 |
+
# Mixed precision - A100 optimized
|
43 |
+
fp16: bool = False # Use bf16 for A100
|
44 |
+
bf16: bool = True # Better for A100
|
45 |
+
|
46 |
+
# DDP configuration
|
47 |
+
ddp_backend: str = "nccl"
|
48 |
+
ddp_find_unused_parameters: bool = False
|
49 |
+
|
50 |
+
# Logging and saving - optimized for fast training
|
51 |
+
save_steps: int = 2000
|
52 |
+
eval_steps: int = 1000
|
53 |
+
logging_steps: int = 25
|
54 |
+
save_total_limit: Optional[int] = 5 # Keep fewer checkpoints
|
55 |
+
|
56 |
+
# Evaluation
|
57 |
+
eval_strategy: str = "steps"
|
58 |
+
metric_for_best_model: str = "eval_loss"
|
59 |
+
greater_is_better: bool = False
|
60 |
+
load_best_model_at_end: bool = True
|
61 |
+
|
62 |
+
# OpenHermes-FR Dataset configuration
|
63 |
+
dataset_name: str = "legmlai/openhermes-fr"
|
64 |
+
dataset_split: str = "train"
|
65 |
+
input_field: str = "prompt"
|
66 |
+
target_field: str = "accepted_completion"
|
67 |
+
filter_bad_entries: bool = True
|
68 |
+
bad_entry_field: str = "bad_entry"
|
69 |
+
|
70 |
+
# Data configuration (not used for HF datasets but kept for compatibility)
|
71 |
+
data_dir: str = None
|
72 |
+
train_file: str = None
|
73 |
+
validation_file: Optional[str] = None
|
74 |
+
test_file: Optional[str] = None
|
75 |
+
|
76 |
+
# Chat template configuration
|
77 |
+
use_chat_template: bool = True
|
78 |
+
chat_template_kwargs: dict = None
|
79 |
+
|
80 |
+
# Trackio monitoring configuration
|
81 |
+
enable_tracking: bool = True
|
82 |
+
trackio_url: Optional[str] = None
|
83 |
+
trackio_token: Optional[str] = None
|
84 |
+
log_artifacts: bool = True
|
85 |
+
log_metrics: bool = True
|
86 |
+
log_config: bool = True
|
87 |
+
experiment_name: Optional[str] = None
|
88 |
+
|
89 |
+
# Additional A100 optimizations for balanced performance
|
90 |
+
dataloader_num_workers: int = 10 # More workers for faster data loading
|
91 |
+
dataloader_pin_memory: bool = True
|
92 |
+
dataloader_prefetch_factor: int = 3 # Increased prefetch
|
93 |
+
|
94 |
+
# Memory optimizations
|
95 |
+
max_grad_norm: float = 1.0 # Gradient clipping
|
96 |
+
group_by_length: bool = True # Group similar length sequences
|
97 |
+
|
98 |
+
# Training duration calculations
|
99 |
+
# With 800k datapoints and effective batch size of 128:
|
100 |
+
# Steps per epoch = 800,000 / 128 = 6,250 steps
|
101 |
+
# For 3 passes: 6,250 * 3 = 18,750 steps
|
102 |
+
# Current max_iters = 18,000 (about 2.9 passes)
|
103 |
+
|
104 |
+
def __post_init__(self):
|
105 |
+
if self.chat_template_kwargs is None:
|
106 |
+
self.chat_template_kwargs = {
|
107 |
+
"enable_thinking": False,
|
108 |
+
"add_generation_prompt": True
|
109 |
+
}
|
110 |
+
|
111 |
+
# Validate configuration
|
112 |
+
if self.fp16 and self.bf16:
|
113 |
+
raise ValueError("Cannot use both fp16 and bf16")
|
114 |
+
|
115 |
+
if self.max_seq_length > 131072: # 128k limit
|
116 |
+
raise ValueError("max_seq_length cannot exceed 131072")
|
117 |
+
|
118 |
+
# Calculate training statistics
|
119 |
+
effective_batch_size = self.batch_size * self.gradient_accumulation_steps
|
120 |
+
steps_per_epoch = 800000 // effective_batch_size # Approximate for 800k dataset
|
121 |
+
epochs_for_max_iters = self.max_iters / steps_per_epoch
|
122 |
+
|
123 |
+
print(f"=== A100 Balanced Configuration ===")
|
124 |
+
print(f"Effective batch size: {effective_batch_size}")
|
125 |
+
print(f"Steps per epoch: ~{steps_per_epoch}")
|
126 |
+
print(f"Training for ~{epochs_for_max_iters:.1f} epochs")
|
127 |
+
print(f"Total training steps: {self.max_iters}")
|
128 |
+
print(f"Learning rate: {self.learning_rate}")
|
129 |
+
print(f"Mixed precision: {'bf16' if self.bf16 else 'fp16'}")
|
130 |
+
print(f"Max sequence length: {self.max_seq_length}")
|
131 |
+
print(f"Gradient checkpointing: {self.use_gradient_checkpointing}")
|
132 |
+
print(f"Batch size: {self.batch_size}")
|
133 |
+
print(f"Gradient accumulation: {self.gradient_accumulation_steps}")
|
134 |
+
print(f"Data loader workers: {self.dataloader_num_workers}")
|
135 |
+
print(f"Prefetch factor: {self.dataloader_prefetch_factor}")
|
136 |
+
print("=" * 50)
|
137 |
+
|
138 |
+
# Set default experiment name if not provided
|
139 |
+
if self.experiment_name is None:
|
140 |
+
self.experiment_name = "smollm3_openhermes_fr_balanced"
|
141 |
+
|
142 |
+
def get_config(config_path: str) -> SmolLM3ConfigOpenHermesFRBalanced:
|
143 |
+
"""Load configuration from file or return default"""
|
144 |
+
if os.path.exists(config_path):
|
145 |
+
# Load from file if it exists
|
146 |
+
import importlib.util
|
147 |
+
spec = importlib.util.spec_from_file_location("config_module", config_path)
|
148 |
+
config_module = importlib.util.module_from_spec(spec)
|
149 |
+
spec.loader.exec_module(config_module)
|
150 |
+
|
151 |
+
if hasattr(config_module, 'config'):
|
152 |
+
return config_module.config
|
153 |
+
else:
|
154 |
+
# Try to find a config class
|
155 |
+
for attr_name in dir(config_module):
|
156 |
+
attr = getattr(config_module, attr_name)
|
157 |
+
if isinstance(attr, SmolLM3ConfigOpenHermesFRBalanced):
|
158 |
+
return attr
|
159 |
+
|
160 |
+
# Return default configuration
|
161 |
+
return SmolLM3ConfigOpenHermesFRBalanced()
|
162 |
+
|
163 |
+
# Default configuration instance
|
164 |
+
config = SmolLM3ConfigOpenHermesFRBalanced()
|
run_a100_large_experiment.py
CHANGED
@@ -9,6 +9,9 @@ import os
|
|
9 |
import sys
|
10 |
from pathlib import Path
|
11 |
|
|
|
|
|
|
|
12 |
def main():
|
13 |
parser = argparse.ArgumentParser(description="Run A100 large-scale experiments")
|
14 |
parser.add_argument(
|
|
|
9 |
import sys
|
10 |
from pathlib import Path
|
11 |
|
12 |
+
# Set CUDA memory optimization
|
13 |
+
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
|
14 |
+
|
15 |
def main():
|
16 |
parser = argparse.ArgumentParser(description="Run A100 large-scale experiments")
|
17 |
parser.add_argument(
|