File size: 6,472 Bytes
5b45d10
297437a
e760939
5b45d10
297437a
fa0faa4
 
 
 
 
 
 
 
 
 
 
 
e760939
fa0faa4
 
 
e760939
 
 
 
fa0faa4
e760939
 
fa0faa4
 
e760939
 
 
 
 
 
 
 
 
 
fa0faa4
e760939
fa0faa4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e760939
fa0faa4
e760939
 
 
 
88f7b26
 
dc99d7c
235cd2f
46cd776
dc99d7c
e760939
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

import gradio as gr
import requests
import os  

def check_hallucination(assertion, citation):
    api_url = "https://api-inference.huggingface.co/models/vectara/hallucination_evaluation_model"
    header = {"Authorization": f"Bearer {hf_token}"}
    payload = {"inputs": f"{assertion} [SEP] {citation}"}

    response = requests.post(api_url, headers=header, json=payload, timeout=120)
    output = response.json()
    output = output[0][0]["score"]

    return f"**hallucination score:** {output}"


# Define the API parameters
vapi_url = "https://api-inference.huggingface.co/models/vectara/hallucination_evaluation_model"

headers = {"Authorization": f"Bearer {hf_token}"}


# Function to query the API
def query(payload):
    response = requests.post(vapi_url, headers=headers, json=payload)
    return response.json()


# Function to evaluate hallucination
def evaluate_hallucination(input1, input2):
    # Combine the inputs
    combined_input = f"{input1}. {input2}"
    
    # Make the API call
    output = query({"inputs": combined_input})
    
    # Extract the score from the output
    score = output[0][0]['score']
    
    # Generate a label based on the score
    if score < 0.5:
        label = f"🔴 High risk. Score: {score:.2f}"
    else:
        label = f"🟢 Low risk. Score: {score:.2f}"
    
    return label

def query_vectara(text):
    user_message = text

    # Read authentication parameters from the .env file
    customer_id = os.getenv('CUSTOMER_ID')
    corpus_id = os.getenv('CORPUS_ID')
    api_key = os.getenv('API_KEY')

    # Define the headers
    api_key_header = {
        "customer-id": customer_id,
        "x-api-key": api_key
    }

    # Define the request body in the structure provided in the example
    request_body = {
        "query": [
            {
                "query": user_message,
                "queryContext": "",
                "start": 1,
                "numResults": 25,
                "contextConfig": {
                    "charsBefore": 0,
                    "charsAfter": 0,
                    "sentencesBefore": 2,
                    "sentencesAfter": 2,
                    "startTag": "%START_SNIPPET%",
                    "endTag": "%END_SNIPPET%",
                },
                "rerankingConfig": {
                    "rerankerId": 272725718,
                    "mmrConfig": {
                        "diversityBias": 0.35
                    }
                },
                "corpusKey": [
                    {
                        "customerId": customer_id,
                        "corpusId": corpus_id,
                        "semantics": 0,
                        "metadataFilter": "",
                        "lexicalInterpolationConfig": {
                            "lambda": 0
                        },
                        "dim": []
                    }
                ],
                "summary": [
                    {
                        "maxSummarizedResults": 5,
                        "responseLang": "auto",
                        "summarizerPromptName": "vectara-summary-ext-v1.2.0"
                    }
                ]
            }
        ]
    }

    # Make the API request using Gradio
    response = requests.post(
        "https://api.vectara.io/v1/query",
        json=request_body,  # Use json to automatically serialize the request body
        verify=True,
        headers=api_key_header
    )

    if response.status_code == 200:
        query_data = response.json()
        if query_data:
            sources_info = []

            # Extract the summary.
            summary = query_data['responseSet'][0]['summary'][0]['text']

            # Iterate over all response sets
            for response_set in query_data.get('responseSet', []):
                # Extract sources
                # Limit to top 5 sources.
                for source in response_set.get('response', [])[:5]:
                    source_metadata = source.get('metadata', [])
                    source_info = {}

                    for metadata in source_metadata:
                        metadata_name = metadata.get('name', '')
                        metadata_value = metadata.get('value', '')

                        if metadata_name == 'title':
                            source_info['title'] = metadata_value
                        elif metadata_name == 'author':
                            source_info['author'] = metadata_value
                        elif metadata_name == 'pageNumber':
                            source_info['page number'] = metadata_value

                    if source_info:
                        sources_info.append(source_info)

            result = {"summary": summary, "sources": sources_info}
            return f"{json.dumps(result, indent=2)}"
        else:
            return "No data found in the response."
    else:
        return f"Error: {response.status_code}"

# Create the Gradio interface
iface = gr.Interface(
    fn=evaluate_hallucination,
    inputs=[gr.Textbox(label="Assertion"), gr.Textbox(label="Citation")],
    outputs=[gr.Label(), gr.Textbox(label="Explanation")],
    live=False,
    title="👋🏻Welcome to 🌟Tonic's 🧠🌈Hallucination Tester 🔴🟢",
    description="How To Use 🌈Hallucination tester: 🗣️📝add any assertion from an LLM or a human 🗣️😷 add any citation from a RAG retriever or a source 👇🏻📩 Press send 🔴red means a 🌈hallucination, 🟢 green means a 🧠credible assertion. Check out the model [vectara/hallucination_evaluation_model](https://huggingface.co/vectara/hallucination_evaluation_model) You can also use 🥒🍆🫑Vectara - Hallucination Tester 🗣️😷 via API below or way by cloning this space. 🧬🔬🔍 Simply click here: Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community 👻  [![Join us on Discord](https://img.shields.io/discord/1109943800132010065?label=Discord&logo=discord&style=flat-square)](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to 🌟 [DataTonic](https://github.com/Tonic-AI/DataTonic) 🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗",
    theme='ParityError/Anime',
)

# Launch the interface
iface.launch()