Tonic commited on
Commit
f506d75
Β·
1 Parent(s): ca0002f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +28 -75
app.py CHANGED
@@ -1,100 +1,53 @@
1
- from transformers import AutoTokenizer, MistralForCausalLM
2
- import torch
3
- import gradio as gr
4
- import random
5
- from textwrap import wrap
6
- from transformers import AutoConfig, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM, MistralForCausalLM
7
- from peft import PeftModel, PeftConfig
8
  import torch
9
  import gradio as gr
10
  import os
11
 
12
  hf_token = os.environ.get('HUGGINGFACE_TOKEN')
13
 
14
- # Functions to Wrap the Prompt Correctly
15
- def wrap_text(text, width=90):
16
- lines = text.split('\n')
17
- wrapped_lines = [textwrap.fill(line, width=width) for line in lines]
18
- wrapped_text = '\n'.join(wrapped_lines)
19
- return wrapped_text
20
- def multimodal_prompt(user_input, system_prompt="You are an expert medical analyst:"):
21
-
22
- # Combine user input and system prompt
23
- formatted_input = f"{user_input}{system_prompt}"
24
-
25
- # Encode the input text
26
- encodeds = tokenizer(formatted_input, return_tensors="pt", add_special_tokens=False)
27
- model_inputs = encodeds.to(device)
28
-
29
- # Generate a response using the model
30
- output = model.generate(
31
- **model_inputs,
32
- max_length=max_length,
33
- use_cache=True,
34
- early_stopping=True,
35
- bos_token_id=model.config.bos_token_id,
36
- eos_token_id=model.config.eos_token_id,
37
- pad_token_id=model.config.eos_token_id,
38
- temperature=0.1,
39
- do_sample=True
40
- )
41
-
42
- # Decode the response
43
- response_text = tokenizer.decode(output[0], skip_special_tokens=True)
44
-
45
- return response_text
46
-
47
  # Define the device
48
  device = "cuda" if torch.cuda.is_available() else "cpu"
49
 
50
- # Use the base model's ID
51
- base_model_id = "stabilityai/stablelm-3b-4e1t"
52
- model_directory = "Tonic/stablemed"
53
-
54
- # Instantiate the Tokenizer
55
- tokenizer = AutoTokenizer.from_pretrained("stabilityai/stablelm-3b-4e1t", token=hf_token, trust_remote_code=True, padding_side="left")
56
- # tokenizer = AutoTokenizer.from_pretrained("Tonic/stablemed", trust_remote_code=True, padding_side="left")
57
- tokenizer.pad_token = tokenizer.eos_token
58
- tokenizer.padding_side = 'left'
59
-
60
- # Load the PEFT model
61
- peft_config = PeftConfig.from_pretrained("Tonic/stablemed", token=hf_token)
62
- peft_model = AutoModelForCausalLM.from_pretrained("stabilityai/stablelm-3b-4e1t", token=hf_token, trust_remote_code=True)
63
- peft_model = PeftModel.from_pretrained(peft_model, "Tonic/stablemed", token=hf_token)
64
 
65
  class ChatBot:
66
  def __init__(self):
67
  self.history = []
68
 
69
  def predict(self, user_input, system_prompt="You are an expert medical analyst:"):
70
- # Combine user input and system prompt
71
- formatted_input = f"{user_input}{system_prompt}"
72
-
73
- # Encode user input
74
- user_input_ids = tokenizer.encode(formatted_input, return_tensors="pt")
75
-
76
- # Concatenate the user input with chat history
77
- if len(self.history) > 0:
78
- chat_history_ids = torch.cat([self.history, user_input_ids], dim=-1)
79
- else:
80
- chat_history_ids = user_input_ids
81
-
82
- # Generate a response using the PEFT model
83
- response = peft_model.generate(input_ids=chat_history_ids, max_length=1200, pad_token_id=tokenizer.eos_token_id)
84
-
85
- # Update chat history
86
- self.history = chat_history_ids
87
 
88
  # Decode and return the response
89
- response_text = tokenizer.decode(response[0], skip_special_tokens=True)
90
  return response_text
91
 
92
  bot = ChatBot()
93
 
94
- title = "πŸ‘‹πŸ»Welcome to Tonic's 😷StableMedβš•οΈ Chat🦟"
95
  description = """
96
- You can use this Space to test out the current model [StableMed](https://huggingface.co/Tonic/stablemed)
97
- You can also use 😷StableMedβš•οΈ on your laptop & by cloning this space. πŸ§¬πŸ”¬πŸ” Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/Tonic/StableMed_Chat?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3>
98
  Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder'sπŸ› οΈcommunity on πŸ‘»Discord: [Discord](https://discord.gg/GWpVpekp) On πŸ€—Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Polytonic](https://github.com/tonic-ai) & contribute to 🌟 [PolyGPT](https://github.com/tonic-ai/polygpt-alpha)
99
  """
100
  examples = [["What is the proper treatment for buccal herpes?", "Please provide information on the most effective antiviral medications and home remedies for treating buccal herpes."]]
 
1
+ from transformers import AutoTokenizer, AutoModelForCausalLM
 
 
 
 
 
 
2
  import torch
3
  import gradio as gr
4
  import os
5
 
6
  hf_token = os.environ.get('HUGGINGFACE_TOKEN')
7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  # Define the device
9
  device = "cuda" if torch.cuda.is_available() else "cpu"
10
 
11
+ # Load tokenizer and model
12
+ tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-zephyr-3b', token=hf_token)
13
+ model = AutoModelForCausalLM.from_pretrained(
14
+ 'stabilityai/stablelm-zephyr-3b',
15
+ trust_remote_code=True,
16
+ device_map="auto",
17
+ token=hf_token
18
+ )
19
+ model.to(device)
 
 
 
 
 
20
 
21
  class ChatBot:
22
  def __init__(self):
23
  self.history = []
24
 
25
  def predict(self, user_input, system_prompt="You are an expert medical analyst:"):
26
+ prompt = [{'role': 'user', 'content': user_input}, {'role': 'system', 'content': system_prompt}]
27
+ inputs = tokenizer.apply_chat_template(
28
+ prompt,
29
+ add_generation_prompt=True,
30
+ return_tensors='pt'
31
+ )
32
+
33
+ # Generate a response using the model
34
+ tokens = model.generate(
35
+ inputs.to(model.device),
36
+ max_new_tokens=1024,
37
+ temperature=0.8,
38
+ do_sample=True
39
+ )
 
 
 
40
 
41
  # Decode and return the response
42
+ response_text = tokenizer.decode(tokens[0], skip_special_tokens=False)
43
  return response_text
44
 
45
  bot = ChatBot()
46
 
47
+ title = "πŸ‘‹πŸ»Welcome to 🌟Tonic'sπŸ—½Stable🌟LM 3BπŸš€Chat"
48
  description = """
49
+ You can use this Space to test out the current model [stabilityai/stablelm-zephyr-3b](https://huggingface.co/stabilityai/stablelm-zephyr-3b)
50
+ You can also use 😷StableMedβš•οΈ on your laptop & by cloning this space. πŸ§¬πŸ”¬πŸ” Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/Tonic/TonicsStableLM3B?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3>
51
  Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder'sπŸ› οΈcommunity on πŸ‘»Discord: [Discord](https://discord.gg/GWpVpekp) On πŸ€—Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Polytonic](https://github.com/tonic-ai) & contribute to 🌟 [PolyGPT](https://github.com/tonic-ai/polygpt-alpha)
52
  """
53
  examples = [["What is the proper treatment for buccal herpes?", "Please provide information on the most effective antiviral medications and home remedies for treating buccal herpes."]]