File size: 6,102 Bytes
fd508d7
 
 
 
 
 
aee8e11
fd508d7
 
 
 
 
 
aa5f607
 
fd508d7
c2a79f8
2a62c44
ca6eb64
 
aa5f607
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e81e85b
fd508d7
 
 
 
 
 
 
 
 
 
aa5f607
2a62c44
aa5f607
 
 
 
 
 
fd508d7
 
 
ca6eb64
fd508d7
 
 
c2a79f8
 
fd508d7
 
 
 
 
aa5f607
 
fd508d7
aa5f607
fd508d7
aa5f607
fd508d7
aa5f607
fd508d7
 
 
2da65b0
fd508d7
2da65b0
 
fd508d7
 
 
aa5f607
fd508d7
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import spaces
import torch
import torch.nn.functional as F
from torch import Tensor
from transformers import AutoTokenizer, AutoModel
import gradio as gr
import os

title = """
# 👋🏻Welcome to 🙋🏻‍♂️Tonic's 🐣e5-mistral🛌🏻Embeddings """
description = """
You can use this Space to test out the current model [intfloat/e5-mistral-7b-instruct](https://huggingface.co/intfloat/e5-mistral-7b-instruct). e5mistral has a larger context window, a different prompting/return mechanism and generally better results than other embedding models. 
You can also use 🐣e5-mistral🛌🏻 by cloning this space. 🧬🔬🔍 Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/Tonic/e5?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3> 
Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community 👻[![(https://discordapp.com/api/guilds/1109943800132010065/widget.png)](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Polytonic](https://github.com/tonic-ai) & contribute to 🌟 [Poly](https://github.com/tonic-ai/poly) 🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗
You can use this space in **two ways !** either select an embeddings mode or 'None' to speak with the e5mistral LLM 🤗
"""

os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:30'
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

tasks = {
        'ArguAna': 'Given a claim, find documents that refute the claim',
        'ClimateFEVER': 'Given a claim about climate change, retrieve documents that support or refute the claim',
        'DBPedia': 'Given a query, retrieve relevant entity descriptions from DBPedia',
        'FEVER': 'Given a claim, retrieve documents that support or refute the claim',
        'FiQA2018': 'Given a financial question, retrieve user replies that best answer the question',
        'HotpotQA': 'Given a multi-hop question, retrieve documents that can help answer the question',
        'MSMARCO': 'Given a web search query, retrieve relevant passages that answer the query',
        'NFCorpus': 'Given a question, retrieve relevant documents that best answer the question',
        'NQ': 'Given a question, retrieve Wikipedia passages that answer the question',
        'QuoraRetrieval': 'Given a question, retrieve questions that are semantically equivalent to the given question',
        'SCIDOCS': 'Given a scientific paper title, retrieve paper abstracts that are cited by the given paper',
        'SciFact': 'Given a scientific claim, retrieve documents that support or refute the claim',
        'Touche2020': 'Given a question, retrieve detailed and persuasive arguments that answer the question',
        'TRECCOVID': 'Given a query on COVID-19, retrieve documents that answer the query',
}

tokenizer = AutoTokenizer.from_pretrained('intfloat/e5-mistral-7b-instruct')
model = AutoModel.from_pretrained('intfloat/e5-mistral-7b-instruct', torch_dtype=torch.float16, device_map=device)

def last_token_pool(last_hidden_states: Tensor, attention_mask: Tensor) -> Tensor:
    left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
    if left_padding:
        return last_hidden_states[:, -1]
    else:
        sequence_lengths = attention_mask.sum(dim=1) - 1
        batch_size = last_hidden_states.shape[0]
        return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths]

@spaces.GPU
def compute_embeddings(selected_task, *input_texts):
    max_length = 2042
    if selected_task:
        task = tasks[selected_task]
        processed_texts = [f'Instruct: {task}\nQuery: {text}' for text in input_texts]
    else:
        processed_texts = [f'Instruct: {system_prompt}\nQuerry: {text}' for text in input_texts]
    task = tasks[selected_task]
    batch_dict = tokenizer(processed_texts, max_length=max_length - 1, return_attention_mask=False, padding=False, truncation=True)
    batch_dict['input_ids'] = [input_ids + [tokenizer.eos_token_id] for input_ids in batch_dict['input_ids']]
    batch_dict = tokenizer.pad(batch_dict, padding=True, return_attention_mask=True, return_tensors='pt')
    batch_dict = {k: v.to(device) for k, v in batch_dict.items()}
    outputs = model(**batch_dict)
    embeddings = last_token_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
    embeddings = F.normalize(embeddings, p=2, dim=1)
    embeddings_list = embeddings.detach().cpu().numpy().tolist()
    return embeddings_list
    
def app_interface():
    with gr.Blocks() as demo:
        gr.Markdown(title)
        gr.Markdown(description)

        task_dropdown = gr.Dropdown(list(tasks.keys()) + ["None"], label="Select a Task (Optional)", value="None")
        
        input_text_boxes = gr.Textbox(label=f"Input Text")
        
        compute_button = gr.Button("Try🐣🛌🏻e5")
        
        output_display = gr.Textbox(label="🐣e5-mistral🛌🏻")
        
        with gr.Row():
            with gr.Column():
                    text_box
            with gr.Column():
                compute_button
                output_display

        compute_button.click(
            fn=compute_embeddings,
            inputs=[task_dropdown] + input_text_boxes,
            outputs=output_display
        )

    return demo

# Run the Gradio app
app_interface().launch()