Spaces:
Runtime error
Runtime error
File size: 8,832 Bytes
fd508d7 aee8e11 fd508d7 d519921 fd508d7 e5cea6f fd508d7 90d632e ca6eb64 aa5f607 e81e85b fd508d7 0443f2a af2b5af fd508d7 af2b5af d519921 0443f2a 78a49c2 99939d8 0443f2a 99939d8 0443f2a 7acdad2 0443f2a 99939d8 78a49c2 0443f2a 99939d8 af2b5af 0443f2a af2b5af 1902a05 0443f2a 99939d8 0443f2a 7b7377a fd508d7 df3747d aa5f607 d519921 0443f2a 78a49c2 d519921 78a49c2 d519921 3331ada d519921 0443f2a d519921 fd508d7 cc28e50 fd508d7 2da65b0 fd508d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
import spaces
import torch
import torch.nn.functional as F
from torch import Tensor
from transformers import AutoTokenizer, AutoModel
import gradio as gr
import os
title = """
# 👋🏻Welcome to 🙋🏻♂️Tonic's 🐣e5-mistral🛌🏻Embeddings """
description = """
You can use this ZeroGPU Space to test out the current model [intfloat/e5-mistral-7b-instruct](https://huggingface.co/intfloat/e5-mistral-7b-instruct). 🐣e5-mistral🛌🏻 has a larger context🪟window, a different prompting/return🛠️mechanism and generally better results than other embedding models. use it via API to create embeddings or try out the sentence similarity to see how various optimization parameters affect performance.
You can also use 🐣e5-mistral🛌🏻 by cloning this space. 🧬🔬🔍 Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/Tonic/e5?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3>
Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community 👻 [](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Polytonic](https://github.com/tonic-ai) & contribute to 🌟 [Poly](https://github.com/tonic-ai/poly) 🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗
"""
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:30'
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
tasks = {
'ArguAna': 'Given a claim, find documents that refute the claim',
'ClimateFEVER': 'Given a claim about climate change, retrieve documents that support or refute the claim',
'DBPedia': 'Given a query, retrieve relevant entity descriptions from DBPedia',
'FEVER': 'Given a claim, retrieve documents that support or refute the claim',
'FiQA2018': 'Given a financial question, retrieve user replies that best answer the question',
'HotpotQA': 'Given a multi-hop question, retrieve documents that can help answer the question',
'MSMARCO': 'Given a web search query, retrieve relevant passages that answer the query',
'NFCorpus': 'Given a question, retrieve relevant documents that best answer the question',
'NQ': 'Given a question, retrieve Wikipedia passages that answer the question',
'QuoraRetrieval': 'Given a question, retrieve questions that are semantically equivalent to the given question',
'SCIDOCS': 'Given a scientific paper title, retrieve paper abstracts that are cited by the given paper',
'SciFact': 'Given a scientific claim, retrieve documents that support or refute the claim',
'Touche2020': 'Given a question, retrieve detailed and persuasive arguments that answer the question',
'TRECCOVID': 'Given a query on COVID-19, retrieve documents that answer the query',
}
tokenizer = AutoTokenizer.from_pretrained('intfloat/e5-mistral-7b-instruct')
model = AutoModel.from_pretrained('intfloat/e5-mistral-7b-instruct', torch_dtype=torch.float16, device_map=device)
def last_token_pool(last_hidden_states: Tensor, attention_mask: Tensor) -> Tensor:
left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
if left_padding:
return last_hidden_states[:, -1]
else:
sequence_lengths = attention_mask.sum(dim=1) - 1
batch_size = last_hidden_states.shape[0]
return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths]
def clear_cuda_cache():
torch.cuda.empty_cache()
def free_memory(*args):
for arg in args:
del arg
@spaces.GPU
def compute_embeddings(selected_task, input_text):
try:
task_description = tasks[selected_task]
except KeyError:
print(f"Selected task not found: {selected_task}")
return f"Error: Task '{selected_task}' not found. Please select a valid task."
max_length = 2042
processed_texts = [f'Instruct: {task_description}\nQuery: {input_text}']
batch_dict = tokenizer(processed_texts, max_length=max_length - 1, return_attention_mask=False, padding=False, truncation=True)
batch_dict['input_ids'] = [input_ids + [tokenizer.eos_token_id] for input_ids in batch_dict['input_ids']]
batch_dict = tokenizer.pad(batch_dict, padding=True, return_attention_mask=True, return_tensors='pt')
batch_dict = {k: v.to(device) for k, v in batch_dict.items()}
outputs = model(**batch_dict)
embeddings = last_token_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
embeddings = F.normalize(embeddings, p=2, dim=1)
embeddings_list = embeddings.detach().cpu().numpy().tolist()
return embeddings_list
@spaces.GPU
def compute_similarity(selected_task, sentence1, sentence2, extra_sentence1, extra_sentence2):
try:
task_description = tasks[selected_task]
except KeyError:
print(f"Selected task not found: {selected_task}")
return f"Error: Task '{selected_task}' not found. Please select a valid task."
# Compute embeddings for each sentence
embeddings1 = compute_embeddings(selected_task, sentence1)
embeddings2 = compute_embeddings(selected_task, sentence2)
embeddings3 = compute_embeddings(selected_task, extra_sentence1)
embeddings4 = compute_embeddings(selected_task, extra_sentence2)
# Convert embeddings to tensors
embeddings_tensor1 = torch.tensor(embeddings1).to(device).half()
embeddings_tensor2 = torch.tensor(embeddings2).to(device).half()
embeddings_tensor3 = torch.tensor(embeddings3).to(device).half()
embeddings_tensor4 = torch.tensor(embeddings4).to(device).half()
# Compute cosine similarity
similarity1 = compute_cosine_similarity(embeddings1, embeddings2)
similarity2 = compute_cosine_similarity(embeddings1, embeddings3)
similarity3 = compute_cosine_similarity(embeddings1, embeddings4)
# Free memory
free_memory(embeddings1, embeddings2, embeddings3, embeddings4)
similarity_scores = {"Similarity 1-2": similarity1, "Similarity 1-3": similarity2, "Similarity 1-4": similarity3}
@spaces.GPU
def compute_cosine_similarity(emb1, emb2):
tensor1 = torch.tensor(emb1).to(device).half()
tensor2 = torch.tensor(emb2).to(device).half()
similarity = F.cosine_similarity(tensor1, tensor2).item()
free_memory(tensor1, tensor2)
return similarity
def app_interface():
with gr.Blocks() as demo:
gr.Markdown(title)
gr.Markdown(description)
with gr.Row():
task_dropdown = gr.Dropdown(list(tasks.keys()), label="Select a Task", value=list(tasks.keys())[0])
with gr.Tab("Embedding Generation"):
input_text_box = gr.Textbox(label="📖Input Text")
compute_button = gr.Button("Try🐣🛌🏻e5")
output_display = gr.Textbox(label="🐣e5-mistral🛌🏻 Embeddings")
compute_button.click(
fn=compute_embeddings,
inputs=[task_dropdown, input_text_box],
outputs=output_display
)
with gr.Tab("Sentence Similarity"):
sentence1_box = gr.Textbox(label="'Focus Sentence' - The 'Subject'")
sentence2_box = gr.Textbox(label="'Input Sentence' - 1")
extra_sentence1_box = gr.Textbox(label="'Input Sentence' - 2")
extra_sentence2_box = gr.Textbox(label="'Input Sentence' - 3")
similarity_button = gr.Button("Compute Similarity")
similarity_output = gr.Textbox(label="🐣e5-mistral🛌🏻 Similarity Scores")
similarity_button.click(
fn=compute_similarity,
inputs=[task_dropdown, sentence1_box, sentence2_box, extra_sentence1_box, extra_sentence2_box],
outputs=similarity_output
)
with gr.Row():
with gr.Column():
input_text_box
with gr.Column():
compute_button
output_display
return demo
# Run the Gradio app
app_interface().launch() |