Spaces:
Runtime error
Runtime error
File size: 8,115 Bytes
fd508d7 aee8e11 fd508d7 d519921 fd508d7 e5cea6f fd508d7 2a62c44 ca6eb64 aa5f607 e81e85b fd508d7 d519921 df3747d d519921 7b7377a fd508d7 df3747d aa5f607 d519921 a374398 d519921 df3747d d519921 a374398 d519921 fd508d7 cf07922 cc28e50 fd508d7 2da65b0 fd508d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
import spaces
import torch
import torch.nn.functional as F
from torch import Tensor
from transformers import AutoTokenizer, AutoModel
import gradio as gr
import os
title = """
# 👋🏻Welcome to 🙋🏻♂️Tonic's 🐣e5-mistral🛌🏻Embeddings """
description = """
You can use this ZeroGPU Space to test out the current model [intfloat/e5-mistral-7b-instruct](https://huggingface.co/intfloat/e5-mistral-7b-instruct). 🐣e5-mistral🛌🏻 has a larger context🪟window, a different prompting/return🛠️mechanism and generally better results than other embedding models. use it via API to create embeddings or try out the sentence similarity to see how various optimization parameters affect performance.
You can also use 🐣e5-mistral🛌🏻 by cloning this space. 🧬🔬🔍 Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/Tonic/e5?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3>
Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community 👻 [](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Polytonic](https://github.com/tonic-ai) & contribute to 🌟 [Poly](https://github.com/tonic-ai/poly) 🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗
"""
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:30'
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
tasks = {
'ArguAna': 'Given a claim, find documents that refute the claim',
'ClimateFEVER': 'Given a claim about climate change, retrieve documents that support or refute the claim',
'DBPedia': 'Given a query, retrieve relevant entity descriptions from DBPedia',
'FEVER': 'Given a claim, retrieve documents that support or refute the claim',
'FiQA2018': 'Given a financial question, retrieve user replies that best answer the question',
'HotpotQA': 'Given a multi-hop question, retrieve documents that can help answer the question',
'MSMARCO': 'Given a web search query, retrieve relevant passages that answer the query',
'NFCorpus': 'Given a question, retrieve relevant documents that best answer the question',
'NQ': 'Given a question, retrieve Wikipedia passages that answer the question',
'QuoraRetrieval': 'Given a question, retrieve questions that are semantically equivalent to the given question',
'SCIDOCS': 'Given a scientific paper title, retrieve paper abstracts that are cited by the given paper',
'SciFact': 'Given a scientific claim, retrieve documents that support or refute the claim',
'Touche2020': 'Given a question, retrieve detailed and persuasive arguments that answer the question',
'TRECCOVID': 'Given a query on COVID-19, retrieve documents that answer the query',
}
tokenizer = AutoTokenizer.from_pretrained('intfloat/e5-mistral-7b-instruct')
model = AutoModel.from_pretrained('intfloat/e5-mistral-7b-instruct', torch_dtype=torch.float16, device_map=device)
def last_token_pool(last_hidden_states: Tensor, attention_mask: Tensor) -> Tensor:
left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
if left_padding:
return last_hidden_states[:, -1]
else:
sequence_lengths = attention_mask.sum(dim=1) - 1
batch_size = last_hidden_states.shape[0]
return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths]
class EmbeddingModel:
def __init__(self):
self.tokenizer = AutoTokenizer.from_pretrained('intfloat/e5-mistral-7b-instruct')
self.model = AutoModel.from_pretrained('intfloat/e5-mistral-7b-instruct', torch_dtype=torch.float16, device_map=device)
@spaces.GPU
def compute_embeddings(selected_task, input_text, system_prompt):
max_length = 2042
task_description = tasks[selected_task]
processed_texts = [f'Instruct: {task_description}\nQuery: {input_text}']
batch_dict = tokenizer(processed_texts, max_length=max_length - 1, return_attention_mask=False, padding=False, truncation=True)
batch_dict['input_ids'] = [input_ids + [tokenizer.eos_token_id] for input_ids in batch_dict['input_ids']]
batch_dict = tokenizer.pad(batch_dict, padding=True, return_attention_mask=True, return_tensors='pt')
batch_dict = {k: v.to(device) for k, v in batch_dict.items()}
outputs = model(**batch_dict)
embeddings = last_token_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
embeddings = F.normalize(embeddings, p=2, dim=1)
embeddings_list = embeddings.detach().cpu().numpy().tolist()
return embeddings_list
@spaces.GPU
def compute_similarity(self, sentence1, sentence2, extra_sentence1, extra_sentence2):
sentences = [sentence1, sentence2, extra_sentence1, extra_sentence2]
encoded_input = self.tokenizer(sentences, padding=True, truncation=True, return_tensors='pt').to(device)
with torch.no_grad():
model_output = self.model(**encoded_input)
embeddings = last_token_pool(model_output.last_hidden_state, encoded_input['attention_mask'])
embeddings = F.normalize(embeddings, p=2, dim=1)
# Compute cosine similarity
similarity1 = F.cosine_similarity(embeddings[0].unsqueeze(0), embeddings[1].unsqueeze(0)).item()
similarity2 = F.cosine_similarity(embeddings[2].unsqueeze(0), embeddings[3].unsqueeze(0)).item()
return similarity1, similarity2
def app_interface():
with gr.Blocks() as demo:
gr.Markdown(title)
gr.Markdown(description)
with gr.Row():
task_dropdown = gr.Dropdown(list(tasks.keys()), label="Select a Task", value=list(tasks.keys())[0])
with gr.Tab("Embedding Generation"):
input_text_box = gr.Textbox(label="📖Input Text")
system_prompt_box = gr.Textbox(label="🤖System Prompt (Optional)")
compute_button = gr.Button("Try🐣🛌🏻e5")
output_display = gr.Textbox(label="🐣e5-mistral🛌🏻 Embeddings")
compute_button.click(
fn=EmbeddingModel.compute_embeddings,
inputs=[task_dropdown, input_text_box, system_prompt_box],
outputs=output_display
)
with gr.Tab("Sentence Similarity"):
sentence1_box = gr.Textbox(label="Sentence 1")
sentence2_box = gr.Textbox(label="Sentence 2")
extra_sentence1_box = gr.Textbox(label="Sentence 3")
extra_sentence2_box = gr.Textbox(label="Sentence 4")
similarity_button = gr.Button("Compute Similarity")
similarity_output = gr.Label(label="🐣e5-mistral🛌🏻 Similarity Scores")
similarity_button.click(
fn=EmbeddingModel.compute_similarity,
inputs=[sentence1_box, sentence2_box, extra_sentence1_box, extra_sentence2_box],
outputs=similarity_output
)
with gr.Row():
with gr.Column():
system_prompt_box
input_text_box
with gr.Column():
compute_button
output_display
return demo
# Run the Gradio app
app_interface().launch() |