Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -51,29 +51,29 @@ class EmbeddingModel:
|
|
51 |
self.model = AutoModel.from_pretrained('intfloat/e5-mistral-7b-instruct', torch_dtype=torch.float16, device_map=device)
|
52 |
|
53 |
@spaces.GPU
|
54 |
-
def compute_embeddings(selected_task, input_text):
|
55 |
max_length = 2042
|
56 |
task_description = tasks[selected_task]
|
57 |
processed_texts = [f'Instruct: {task_description}\nQuery: {input_text}']
|
58 |
|
59 |
-
batch_dict = tokenizer(processed_texts, max_length=max_length - 1, return_attention_mask=False, padding=False, truncation=True)
|
60 |
-
batch_dict['input_ids'] = [input_ids + [tokenizer.eos_token_id] for input_ids in batch_dict['input_ids']]
|
61 |
-
batch_dict = tokenizer.pad(batch_dict, padding=True, return_attention_mask=True, return_tensors='pt')
|
62 |
batch_dict = {k: v.to(device) for k, v in batch_dict.items()}
|
63 |
-
outputs = model(**batch_dict)
|
64 |
embeddings = last_token_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
|
65 |
embeddings = F.normalize(embeddings, p=2, dim=1)
|
66 |
embeddings_list = embeddings.detach().cpu().numpy().tolist()
|
67 |
return embeddings_list
|
68 |
|
69 |
@spaces.GPU
|
70 |
-
def compute_similarity(self, sentence1, sentence2, extra_sentence1, extra_sentence2):
|
71 |
|
72 |
# Compute embeddings for each sentence
|
73 |
-
embeddings1 = compute_embeddings(self.selected_task, sentence1)
|
74 |
-
embeddings2 = compute_embeddings(self.selected_task, sentence2)
|
75 |
-
embeddings3 = compute_embeddings(self.selected_task, extra_sentence1)
|
76 |
-
embeddings4 = compute_embeddings(self.selected_task, extra_sentence2)
|
77 |
|
78 |
# Convert embeddings to tensors
|
79 |
embeddings_tensor1 = torch.tensor(embeddings1).to(device)
|
@@ -89,6 +89,7 @@ class EmbeddingModel:
|
|
89 |
|
90 |
|
91 |
def app_interface():
|
|
|
92 |
with gr.Blocks() as demo:
|
93 |
gr.Markdown(title)
|
94 |
gr.Markdown(description)
|
@@ -114,7 +115,7 @@ def app_interface():
|
|
114 |
similarity_output = gr.Label(label="🐣e5-mistral🛌🏻 Similarity Scores")
|
115 |
similarity_button.click(
|
116 |
fn=EmbeddingModel.compute_similarity,
|
117 |
-
inputs=[sentence1_box, sentence2_box, extra_sentence1_box, extra_sentence2_box],
|
118 |
outputs=similarity_output
|
119 |
)
|
120 |
|
|
|
51 |
self.model = AutoModel.from_pretrained('intfloat/e5-mistral-7b-instruct', torch_dtype=torch.float16, device_map=device)
|
52 |
|
53 |
@spaces.GPU
|
54 |
+
def compute_embeddings(self, selected_task, input_text):
|
55 |
max_length = 2042
|
56 |
task_description = tasks[selected_task]
|
57 |
processed_texts = [f'Instruct: {task_description}\nQuery: {input_text}']
|
58 |
|
59 |
+
batch_dict = self.tokenizer(processed_texts, max_length=max_length - 1, return_attention_mask=False, padding=False, truncation=True)
|
60 |
+
batch_dict['input_ids'] = [input_ids + [self.tokenizer.eos_token_id] for input_ids in batch_dict['input_ids']]
|
61 |
+
batch_dict = self.tokenizer.pad(batch_dict, padding=True, return_attention_mask=True, return_tensors='pt')
|
62 |
batch_dict = {k: v.to(device) for k, v in batch_dict.items()}
|
63 |
+
outputs = self.model(**batch_dict)
|
64 |
embeddings = last_token_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
|
65 |
embeddings = F.normalize(embeddings, p=2, dim=1)
|
66 |
embeddings_list = embeddings.detach().cpu().numpy().tolist()
|
67 |
return embeddings_list
|
68 |
|
69 |
@spaces.GPU
|
70 |
+
def compute_similarity(self, selected_task, sentence1, sentence2, extra_sentence1, extra_sentence2):
|
71 |
|
72 |
# Compute embeddings for each sentence
|
73 |
+
embeddings1 = self.compute_embeddings(self.selected_task, sentence1)
|
74 |
+
embeddings2 = self.compute_embeddings(self.selected_task, sentence2)
|
75 |
+
embeddings3 = self.compute_embeddings(self.selected_task, extra_sentence1)
|
76 |
+
embeddings4 = self.compute_embeddings(self.selected_task, extra_sentence2)
|
77 |
|
78 |
# Convert embeddings to tensors
|
79 |
embeddings_tensor1 = torch.tensor(embeddings1).to(device)
|
|
|
89 |
|
90 |
|
91 |
def app_interface():
|
92 |
+
# embedding_model = EmbeddingModel()
|
93 |
with gr.Blocks() as demo:
|
94 |
gr.Markdown(title)
|
95 |
gr.Markdown(description)
|
|
|
115 |
similarity_output = gr.Label(label="🐣e5-mistral🛌🏻 Similarity Scores")
|
116 |
similarity_button.click(
|
117 |
fn=EmbeddingModel.compute_similarity,
|
118 |
+
inputs=[task_dropdown, sentence1_box, sentence2_box, extra_sentence1_box, extra_sentence2_box],
|
119 |
outputs=similarity_output
|
120 |
)
|
121 |
|