import gradio as gr
import torch
from PIL import Image
import requests
from transformers import AutoProcessor
from modeling_florence2 import Florence2ForConditionalGeneration
from configuration_florence2 import Florence2Config
# Initialize model and processor
device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model = Florence2ForConditionalGeneration.from_pretrained("PleIAs/Florence-PDF", torch_dtype=torch_dtype, trust_remote_code=True).to(device)
processor = AutoProcessor.from_pretrained("PleIAs/Florence-PDF", trust_remote_code=True)
# Define task prompts
TASK_PROMPTS = {
"Caption": "
",
"Detailed Caption": "",
"More Detailed Caption": "",
"Object Detection": "",
"Dense Region Caption": "",
"OCR": "",
"OCR with Region": "",
"Region Proposal": ""
}
def process_image(image, task):
prompt = TASK_PROMPTS[task]
inputs = processor(text=prompt, images=image, return_tensors="pt").to(device, torch_dtype)
generated_ids = model.generate(
**inputs,
max_new_tokens=1024,
num_beams=3,
do_sample=False
)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
parsed_answer = processor.post_process_generation(generated_text, task=prompt, image_size=(image.width, image.height))
return str(parsed_answer)
# Define Gradio interface
iface = gr.Interface(
fn=process_image,
inputs=[
gr.Image(type="pil"),
gr.Dropdown(list(TASK_PROMPTS.keys()), label="Task")
],
outputs=gr.Textbox(label="Result"),
title="Florence-2 Demo",
description="Upload an image and select a task to process with Florence-2."
)
# Launch the interface
iface.launch()