neo_doublequant / app.py
Tonic's picture
Create app.py
157cd59 verified
raw
history blame
4.49 kB
import gradio as gr
import torch
import transformers
import bitsandbytes
import accelerate
from transformers import AutoModelForCausalLM, AutoTokenizer
import os
title = """# Welcome to 🌟Tonic's🐇🥷🏻Neo
WhiteRabbit🐇🥷🏻Neo is a model series that can be used for offensive and defensive cybersecurity. You can build with this endpoint using🐇🥷🏻Neo available here : [WhiteRabbitNeo/WhiteRabbitNeo-33B-v1.5](https://huggingface.co/WhiteRabbitNeo/WhiteRabbitNeo-33B-v1.5). You can also use 🐇🥷🏻Neo by cloning this space. Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/Tonic/neo?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3>
Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's 🛠️community 👻 [![Join us on Discord](https://img.shields.io/discord/1109943800132010065?label=Discord&logo=discord&style=flat-square)](https://discord.gg/GWpVpekp) On 🤗Huggingface:[MultiTransformer](https://huggingface.co/MultiTransformer) Math 🔍 [introspector](https://huggingface.co/introspector) On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to🌟 [SciTonic](https://github.com/Tonic-AI/scitonic)🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗
"""
default_system_prompt = """SYSTEM: You are an AI that code. Answer with code."""
model_path = "WhiteRabbitNeo/WhiteRabbitNeo-33B-v1.5"
hf_token = os.getenv("HF_TOKEN")
if not hf_token:
raise ValueError("Hugging Face token not found. Please set the HF_TOKEN environment variable.")
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_compute_dtype=torch.bfloat16
)
model = AutoModelForCausalLM.from_pretrained(
model_path,
device_map="auto",
trust_remote_code=True,
quantization_config=quantization_config
)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
def generate_text(custom_prompt, user_input, temperature, generate_len, top_p, top_k):
system_prompt = custom_prompt if custom_prompt else default_system_prompt
llm_prompt = f"{system_prompt} \nUSER: {user_input} \nASSISTANT: "
tokens = tokenizer.encode(llm_prompt, return_tensors="pt")
tokens = tokens.to("cuda")
length = tokens.shape[1]
with torch.no_grad():
output = model.generate(
input_ids=tokens,
max_length=length + generate_len,
temperature=temperature,
top_p=top_p,
top_k=top_k,
num_return_sequences=1,
)
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
answer = generated_text[len(llm_prompt):].strip()
return answer
def gradio_app():
with gr.Blocks() as demo:
gr.Markdown(title)
with gr.Row():
custom_prompt = gr.Textbox(label="🐇🥷🏻NeoCustom System Prompt (optional)", placeholder="Leave blank to use the default prompt...")
instruction = gr.Textbox(label="Your Instruction", placeholder="Type your question here...")
with gr.Row():
temperature = gr.Slider(minimum=0.1, maximum=1.0, step=0.1, value=0.5, label="Temperature")
generate_len = gr.Slider(minimum=100, maximum=1024, step=10, value=100, label="Generate Length")
top_p = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=1.0, label="Top P")
top_k = gr.Slider(minimum=0, maximum=100, step=1, value=50, label="Top K")
with gr.Row():
generate_btn = gr.Button("Generate")
output = gr.Code(label="🐇🥷🏻Neo:", lines=10)
generate_btn.click(
fn=generate_text,
inputs=[custom_prompt, instruction, temperature, generate_len, top_p, top_k],
outputs=output
)
demo.launch()
if __name__ == "__main__":
gradio_app()