Spaces:
Runtime error
Runtime error
import spaces | |
import gradio as gr | |
import torch | |
import transformers | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import os | |
title = """# Welcome to 🌟Tonic's🐇🥷🏻Neo | |
You can build with this endpoint using🐇🥷🏻Trinity available here : [WhiteRabbitNeo/Trinity-13B](https://huggingface.co//WhiteRabbitNeo/Trinity-13B). You can also use 🐇🥷🏻Trinity by cloning this space. Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/Tonic/trinity?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3> | |
Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's 🛠️community 👻 [![Join us on Discord](https://img.shields.io/discord/1109943800132010065?label=Discord&logo=discord&style=flat-square)](https://discord.gg/GWpVpekp) On 🤗Huggingface:[MultiTransformer](https://huggingface.co/MultiTransformer) Math 🔍 [introspector](https://huggingface.co/introspector) On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to🌟 [SciTonic](https://github.com/Tonic-AI/scitonic)🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗 | |
""" | |
default_system_prompt = """SYSTEM: You are an AI that code. Answer with code.""" | |
model_path = "whiterabbitneo/WhiteRabbitNeo-33B-v-1" | |
hf_token = os.getenv("HF_TOKEN") | |
if not hf_token: | |
raise ValueError("Hugging Face token not found. Please set the HF_TOKEN environment variable.") | |
model = AutoModelForCausalLM.from_pretrained( | |
model_path, | |
torch_dtype=torch.float16, | |
device_map="auto", | |
load_in_4bit=True, | |
load_in_8bit=False, | |
trust_remote_code=True, | |
token=hf_token | |
) | |
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) | |
def generate_text(custom_prompt, user_input, temperature, generate_len, top_p, top_k): | |
system_prompt = custom_prompt if custom_prompt else default_system_prompt | |
llm_prompt = f"{system_prompt} \nUSER: {user_input} \nASSISTANT: " | |
tokens = tokenizer.encode(llm_prompt, return_tensors="pt") | |
tokens = tokens.to("cuda") | |
length = tokens.shape[1] | |
with torch.no_grad(): | |
output = model.generate( | |
input_ids=tokens, | |
max_length=length + generate_len, | |
temperature=temperature, | |
top_p=top_p, | |
top_k=top_k, | |
num_return_sequences=1, | |
) | |
generated_text = tokenizer.decode(output[0], skip_special_tokens=True) | |
answer = generated_text[len(llm_prompt):].strip() | |
return answer | |
def gradio_app(): | |
with gr.Blocks() as demo: | |
gr.Markdown(title) | |
with gr.Row(): | |
custom_prompt = gr.Textbox(label="🐇🥷🏻NeoCustom System Prompt (optional)", placeholder="Leave blank to use the default prompt...") | |
instruction = gr.Textbox(label="Your Instruction", placeholder="Type your question here...") | |
with gr.Row(): | |
temperature = gr.Slider(minimum=0.1, maximum=1.0, step=0.1, value=0.5, label="Temperature") | |
generate_len = gr.Slider(minimum=100, maximum=1024, step=10, value=100, label="Generate Length") | |
top_p = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=1.0, label="Top P") | |
top_k = gr.Slider(minimum=0, maximum=100, step=1, value=50, label="Top K") | |
with gr.Row(): | |
generate_btn = gr.Button("Generate") | |
output = gr.Code(label="Generated Text", lines=10, placeholder="🐇🥷🏻Neo:") | |
generate_btn.click( | |
fn=generate_text, | |
inputs=[custom_prompt, instruction, temperature, generate_len, top_p, top_k], | |
outputs=output | |
) | |
demo.launch() | |
if __name__ == "__main__": | |
gradio_app() | |