Tonic commited on
Commit
cf4b9f9
1 Parent(s): f7bc353

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -85
app.py DELETED
@@ -1,85 +0,0 @@
1
- import spaces
2
- import gradio as gr
3
- import torch
4
- import transformers
5
- from transformers import AutoModelForCausalLM, AutoTokenizer
6
- import os
7
-
8
- title = """# Welcome to 🌟Tonic's🐇🥷🏻Neo
9
- WhiteRabbit🐇🥷🏻Neo is a model series that can be used for offensive and defensive cybersecurity. You can build with this endpoint using🐇🥷🏻Neo available here : [WhiteRabbitNeo/WhiteRabbitNeo-33B-v1.5](https://huggingface.co/WhiteRabbitNeo/WhiteRabbitNeo-33B-v1.5). You can also use 🐇🥷🏻Neo by cloning this space. Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/Tonic/neo?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3>
10
- Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's 🛠️community 👻 [![Join us on Discord](https://img.shields.io/discord/1109943800132010065?label=Discord&logo=discord&style=flat-square)](https://discord.gg/GWpVpekp) On 🤗Huggingface:[MultiTransformer](https://huggingface.co/MultiTransformer) Math 🔍 [introspector](https://huggingface.co/introspector) On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to🌟 [SciTonic](https://github.com/Tonic-AI/scitonic)🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗
11
- """
12
-
13
-
14
- default_system_prompt = """SYSTEM: You are an AI that code. Answer with code."""
15
-
16
- model_path = "WhiteRabbitNeo/WhiteRabbitNeo-33B-v1.5"
17
-
18
- quantization_config = BitsAndBytesConfig(
19
- load_in_4bit=True,
20
- bnb_4bit_use_double_quant=True,
21
- bnb_4bit_compute_dtype=torch.bfloat16
22
- )
23
-
24
- hf_token = os.getenv("HF_TOKEN")
25
- if not hf_token:
26
- raise ValueError("Hugging Face token not found. Please set the HF_TOKEN environment variable.")
27
-
28
- model = AutoModelForCausalLM.from_pretrained(
29
- model_path,
30
- device_map="auto",
31
- trust_remote_code=True,
32
- quantization_config=quantization_config,
33
- token=hf_token,
34
- )
35
-
36
- tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
37
-
38
- @spaces.GPU
39
- def generate_text(custom_prompt, user_input, temperature, generate_len, top_p, top_k):
40
- system_prompt = custom_prompt if custom_prompt else default_system_prompt
41
- llm_prompt = f"{system_prompt} \nUSER: {user_input} \nASSISTANT: "
42
-
43
- tokens = tokenizer.encode(llm_prompt, return_tensors="pt")
44
- tokens = tokens.to("cuda")
45
-
46
- length = tokens.shape[1]
47
- with torch.no_grad():
48
- output = model.generate(
49
- input_ids=tokens,
50
- max_length=length + generate_len,
51
- temperature=temperature,
52
- top_p=top_p,
53
- top_k=top_k,
54
- num_return_sequences=1,
55
- )
56
- generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
57
- answer = generated_text[len(llm_prompt):].strip()
58
-
59
- return answer
60
-
61
- def gradio_app():
62
- with gr.Blocks() as demo:
63
- gr.Markdown(title)
64
- with gr.Row():
65
- custom_prompt = gr.Textbox(label="🐇🥷🏻NeoCustom System Prompt (optional)", placeholder="Leave blank to use the default prompt...")
66
- instruction = gr.Textbox(label="Your Instruction", placeholder="Type your question here...")
67
- with gr.Row():
68
- temperature = gr.Slider(minimum=0.1, maximum=1.0, step=0.1, value=0.5, label="Temperature")
69
- generate_len = gr.Slider(minimum=100, maximum=250, step=1, value=100, label="Generate Length")
70
- top_p = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=1.0, label="Top P")
71
- top_k = gr.Slider(minimum=0, maximum=100, step=1, value=50, label="Top K")
72
- with gr.Row():
73
- generate_btn = gr.Button("Generate")
74
- output = gr.Code(label="🐇🥷🏻Neo:", lines=10)
75
-
76
- generate_btn.click(
77
- fn=generate_text,
78
- inputs=[custom_prompt, instruction, temperature, generate_len, top_p, top_k],
79
- outputs=output
80
- )
81
-
82
- demo.launch()
83
-
84
- if __name__ == "__main__":
85
- gradio_app()