Spaces:
Runtime error
Runtime error
Delete app.py
Browse files
app.py
DELETED
@@ -1,85 +0,0 @@
|
|
1 |
-
import spaces
|
2 |
-
import gradio as gr
|
3 |
-
import torch
|
4 |
-
import transformers
|
5 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
6 |
-
import os
|
7 |
-
|
8 |
-
title = """# Welcome to 🌟Tonic's🐇🥷🏻Neo
|
9 |
-
WhiteRabbit🐇🥷🏻Neo is a model series that can be used for offensive and defensive cybersecurity. You can build with this endpoint using🐇🥷🏻Neo available here : [WhiteRabbitNeo/WhiteRabbitNeo-33B-v1.5](https://huggingface.co/WhiteRabbitNeo/WhiteRabbitNeo-33B-v1.5). You can also use 🐇🥷🏻Neo by cloning this space. Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/Tonic/neo?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3>
|
10 |
-
Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's 🛠️community 👻 [![Join us on Discord](https://img.shields.io/discord/1109943800132010065?label=Discord&logo=discord&style=flat-square)](https://discord.gg/GWpVpekp) On 🤗Huggingface:[MultiTransformer](https://huggingface.co/MultiTransformer) Math 🔍 [introspector](https://huggingface.co/introspector) On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to🌟 [SciTonic](https://github.com/Tonic-AI/scitonic)🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗
|
11 |
-
"""
|
12 |
-
|
13 |
-
|
14 |
-
default_system_prompt = """SYSTEM: You are an AI that code. Answer with code."""
|
15 |
-
|
16 |
-
model_path = "WhiteRabbitNeo/WhiteRabbitNeo-33B-v1.5"
|
17 |
-
|
18 |
-
quantization_config = BitsAndBytesConfig(
|
19 |
-
load_in_4bit=True,
|
20 |
-
bnb_4bit_use_double_quant=True,
|
21 |
-
bnb_4bit_compute_dtype=torch.bfloat16
|
22 |
-
)
|
23 |
-
|
24 |
-
hf_token = os.getenv("HF_TOKEN")
|
25 |
-
if not hf_token:
|
26 |
-
raise ValueError("Hugging Face token not found. Please set the HF_TOKEN environment variable.")
|
27 |
-
|
28 |
-
model = AutoModelForCausalLM.from_pretrained(
|
29 |
-
model_path,
|
30 |
-
device_map="auto",
|
31 |
-
trust_remote_code=True,
|
32 |
-
quantization_config=quantization_config,
|
33 |
-
token=hf_token,
|
34 |
-
)
|
35 |
-
|
36 |
-
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
37 |
-
|
38 |
-
@spaces.GPU
|
39 |
-
def generate_text(custom_prompt, user_input, temperature, generate_len, top_p, top_k):
|
40 |
-
system_prompt = custom_prompt if custom_prompt else default_system_prompt
|
41 |
-
llm_prompt = f"{system_prompt} \nUSER: {user_input} \nASSISTANT: "
|
42 |
-
|
43 |
-
tokens = tokenizer.encode(llm_prompt, return_tensors="pt")
|
44 |
-
tokens = tokens.to("cuda")
|
45 |
-
|
46 |
-
length = tokens.shape[1]
|
47 |
-
with torch.no_grad():
|
48 |
-
output = model.generate(
|
49 |
-
input_ids=tokens,
|
50 |
-
max_length=length + generate_len,
|
51 |
-
temperature=temperature,
|
52 |
-
top_p=top_p,
|
53 |
-
top_k=top_k,
|
54 |
-
num_return_sequences=1,
|
55 |
-
)
|
56 |
-
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
57 |
-
answer = generated_text[len(llm_prompt):].strip()
|
58 |
-
|
59 |
-
return answer
|
60 |
-
|
61 |
-
def gradio_app():
|
62 |
-
with gr.Blocks() as demo:
|
63 |
-
gr.Markdown(title)
|
64 |
-
with gr.Row():
|
65 |
-
custom_prompt = gr.Textbox(label="🐇🥷🏻NeoCustom System Prompt (optional)", placeholder="Leave blank to use the default prompt...")
|
66 |
-
instruction = gr.Textbox(label="Your Instruction", placeholder="Type your question here...")
|
67 |
-
with gr.Row():
|
68 |
-
temperature = gr.Slider(minimum=0.1, maximum=1.0, step=0.1, value=0.5, label="Temperature")
|
69 |
-
generate_len = gr.Slider(minimum=100, maximum=250, step=1, value=100, label="Generate Length")
|
70 |
-
top_p = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=1.0, label="Top P")
|
71 |
-
top_k = gr.Slider(minimum=0, maximum=100, step=1, value=50, label="Top K")
|
72 |
-
with gr.Row():
|
73 |
-
generate_btn = gr.Button("Generate")
|
74 |
-
output = gr.Code(label="🐇🥷🏻Neo:", lines=10)
|
75 |
-
|
76 |
-
generate_btn.click(
|
77 |
-
fn=generate_text,
|
78 |
-
inputs=[custom_prompt, instruction, temperature, generate_len, top_p, top_k],
|
79 |
-
outputs=output
|
80 |
-
)
|
81 |
-
|
82 |
-
demo.launch()
|
83 |
-
|
84 |
-
if __name__ == "__main__":
|
85 |
-
gradio_app()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|