import gradio as gr import torch import transformers import bitsandbytes import accelerate from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig import os title = """# Welcome to 🌟Tonic's🐇🥷🏻Neo WhiteRabbit🐇🥷🏻Neo is a model series that can be used for offensive and defensive cybersecurity. You can build with this endpoint using🐇🥷🏻Neo available here : [WhiteRabbitNeo/WhiteRabbitNeo-33B-v1.5](https://huggingface.co/WhiteRabbitNeo/WhiteRabbitNeo-33B-v1.5). You can also use 🐇🥷🏻Neo by cloning this space. Simply click here: Duplicate Space Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's 🛠️community 👻 [![Join us on Discord](https://img.shields.io/discord/1109943800132010065?label=Discord&logo=discord&style=flat-square)](https://discord.gg/GWpVpekp) On 🤗Huggingface:[MultiTransformer](https://huggingface.co/MultiTransformer) Math 🔍 [introspector](https://huggingface.co/introspector) On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to🌟 [SciTonic](https://github.com/Tonic-AI/scitonic)🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗 """ default_system_prompt = """SYSTEM: You are an AI that code. Answer with code.""" model_path = "WhiteRabbitNeo/WhiteRabbitNeo-33B-v1.5" hf_token = os.getenv("HF_TOKEN") if not hf_token: raise ValueError("Hugging Face token not found. Please set the HF_TOKEN environment variable.") quantization_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=torch.bfloat16 ) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", trust_remote_code=True, quantization_config=quantization_config ) tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) def generate_text(custom_prompt, user_input, temperature, generate_len, top_p, top_k): system_prompt = custom_prompt if custom_prompt else default_system_prompt llm_prompt = f"{system_prompt} \nUSER: {user_input} \nASSISTANT: " tokens = tokenizer.encode(llm_prompt, return_tensors="pt") tokens = tokens.to("cuda") length = tokens.shape[1] with torch.no_grad(): output = model.generate( input_ids=tokens, max_length=length + generate_len, temperature=temperature, top_p=top_p, top_k=top_k, num_return_sequences=1, ) generated_text = tokenizer.decode(output[0], skip_special_tokens=True) answer = generated_text[len(llm_prompt):].strip() return answer def gradio_app(): with gr.Blocks() as demo: gr.Markdown(title) with gr.Row(): custom_prompt = gr.Textbox(label="🐇🥷🏻NeoCustom System Prompt (optional)", placeholder="Leave blank to use the default prompt...") instruction = gr.Textbox(label="Your Instruction", placeholder="Type your question here...") with gr.Row(): temperature = gr.Slider(minimum=0.1, maximum=1.0, step=0.1, value=0.5, label="Temperature") generate_len = gr.Slider(minimum=100, maximum=1024, step=10, value=100, label="Generate Length") top_p = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=1.0, label="Top P") top_k = gr.Slider(minimum=0, maximum=100, step=1, value=50, label="Top K") with gr.Row(): generate_btn = gr.Button("Generate") output = gr.Code(label="🐇🥷🏻Neo:", lines=10) generate_btn.click( fn=generate_text, inputs=[custom_prompt, instruction, temperature, generate_len, top_p, top_k], outputs=output ) demo.launch() if __name__ == "__main__": gradio_app()