Tonic commited on
Commit
6c11267
·
unverified ·
1 Parent(s): d2756e5
Files changed (2) hide show
  1. README.md +2 -2
  2. app.py +11 -2
README.md CHANGED
@@ -1,6 +1,6 @@
1
  ---
2
- title: Salamandra On Device
3
- emoji: 💻
4
  colorFrom: indigo
5
  colorTo: yellow
6
  sdk: gradio
 
1
  ---
2
+ title: Salamandra On-Device
3
+ emoji: 📲🦎
4
  colorFrom: indigo
5
  colorTo: yellow
6
  sdk: gradio
app.py CHANGED
@@ -1,5 +1,7 @@
1
  import gradio as gr
2
  from transformers import pipeline, set_seed
 
 
3
  import torch
4
 
5
  description = "The models are intended for both research and commercial use in any of the languages included in the training data. The base models are intended either for language generation or to be further fine-tuned for specific use-cases. The instruction-tuned variants can be used as general-purpose assistants, as long as the user is fully aware of the model’s limitations."
@@ -11,7 +13,13 @@ joinus = """
11
 
12
  device = "cuda" if torch.cuda.is_available() else "cpu"
13
  model_id = "BSC-LT/salamandra-2b"
14
- generator = pipeline("text-generation", model_id, device_map="auto")
 
 
 
 
 
 
15
 
16
  def generate_text(prompt, temperature, top_p, max_new_tokens, repetition_penalty):
17
  # set_seed(42)
@@ -20,7 +28,8 @@ def generate_text(prompt, temperature, top_p, max_new_tokens, repetition_penalty
20
  "top_p": top_p,
21
  "max_new_tokens": max_new_tokens,
22
  "repetition_penalty": repetition_penalty,
23
- "do_sample": True
 
24
  }
25
  output = generator(prompt, **generation_args)
26
  return output[0]["generated_text"]
 
1
  import gradio as gr
2
  from transformers import pipeline, set_seed
3
+ from transformers import pipeline, set_seed, AutoTokenizer, AutoModelForCausalLM
4
+
5
  import torch
6
 
7
  description = "The models are intended for both research and commercial use in any of the languages included in the training data. The base models are intended either for language generation or to be further fine-tuned for specific use-cases. The instruction-tuned variants can be used as general-purpose assistants, as long as the user is fully aware of the model’s limitations."
 
13
 
14
  device = "cuda" if torch.cuda.is_available() else "cpu"
15
  model_id = "BSC-LT/salamandra-2b"
16
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
17
+ model = AutoModelForCausalLM.from_pretrained(model_id).to(device)
18
+ generator = pipeline("text-generation", model=model, tokenizer=tokenizer, device_map="auto")
19
+
20
+ # Set pad_token_id to eos_token_id for open-end generation
21
+ if tokenizer.pad_token_id is None:
22
+ tokenizer.pad_token_id = tokenizer.eos_token_id
23
 
24
  def generate_text(prompt, temperature, top_p, max_new_tokens, repetition_penalty):
25
  # set_seed(42)
 
28
  "top_p": top_p,
29
  "max_new_tokens": max_new_tokens,
30
  "repetition_penalty": repetition_penalty,
31
+ "do_sample": True,
32
+ "pad_token_id": tokenizer.eos_token_id
33
  }
34
  output = generator(prompt, **generation_args)
35
  return output[0]["generated_text"]