Spaces:
Sleeping
Sleeping
add segment text
Browse files- README.md +2 -2
- app.py +68 -0
- requirements.txt +3 -0
README.md
CHANGED
@@ -1,12 +1,12 @@
|
|
1 |
---
|
2 |
-
title: Segment Text
|
3 |
emoji: π₯
|
4 |
colorFrom: yellow
|
5 |
colorTo: blue
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.44.0
|
8 |
app_file: app.py
|
9 |
-
pinned:
|
10 |
license: mit
|
11 |
---
|
12 |
|
|
|
1 |
---
|
2 |
+
title: Tonic's Segment Text
|
3 |
emoji: π₯
|
4 |
colorFrom: yellow
|
5 |
colorTo: blue
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.44.0
|
8 |
app_file: app.py
|
9 |
+
pinned: true
|
10 |
license: mit
|
11 |
---
|
12 |
|
app.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import DebertaV2Tokenizer, DebertaV2ForTokenClassification
|
3 |
+
import torch
|
4 |
+
|
5 |
+
|
6 |
+
model_name = "PleIAs/Segmentext"
|
7 |
+
tokenizer = DebertaV2Tokenizer.from_pretrained(model_name)
|
8 |
+
model = DebertaV2ForTokenClassification.from_pretrained(model_name)
|
9 |
+
|
10 |
+
id2label = {
|
11 |
+
0: "author", 1: "bibliography", 2: "caption", 3: "contact",
|
12 |
+
4: "date", 5: "dialog", 6: "footnote", 7: "keywords",
|
13 |
+
8: "math", 9: "paratext", 10: "separator", 11: "table",
|
14 |
+
12: "text", 13: "title"
|
15 |
+
}
|
16 |
+
|
17 |
+
|
18 |
+
color_map = {
|
19 |
+
"author": "blue", "bibliography": "purple", "caption": "orange",
|
20 |
+
"contact": "cyan", "date": "green", "dialog": "yellow",
|
21 |
+
"footnote": "pink", "keywords": "lightblue", "math": "red",
|
22 |
+
"paratext": "lightgreen", "separator": "gray", "table": "brown",
|
23 |
+
"text": "lightgray", "title": "gold"
|
24 |
+
}
|
25 |
+
|
26 |
+
|
27 |
+
def segment_text(input_text):
|
28 |
+
|
29 |
+
tokens = tokenizer(input_text, return_tensors="pt", truncation=True, padding=True)
|
30 |
+
|
31 |
+
with torch.no_grad():
|
32 |
+
outputs = model(**tokens)
|
33 |
+
|
34 |
+
logits = outputs.logits
|
35 |
+
predictions = torch.argmax(logits, dim=-1).squeeze().tolist()
|
36 |
+
|
37 |
+
tokens_decoded = tokenizer.convert_ids_to_tokens(tokens['input_ids'].squeeze())
|
38 |
+
|
39 |
+
segments = []
|
40 |
+
current_word = ""
|
41 |
+
for token, label_id in zip(tokens_decoded, predictions):
|
42 |
+
if token.startswith("β"): # handling wordpieces, specific to some tokenizers
|
43 |
+
if current_word:
|
44 |
+
segments.append((current_word, id2label[label_id]))
|
45 |
+
current_word = token.replace("β", "") # new word
|
46 |
+
else:
|
47 |
+
current_word += token # append subword part to current word
|
48 |
+
|
49 |
+
if current_word:
|
50 |
+
segments.append((current_word, id2label[label_id]))
|
51 |
+
|
52 |
+
return segments
|
53 |
+
|
54 |
+
with gr.Blocks() as demo:
|
55 |
+
gr.Markdown("# PleIAs/Segmentext Text Segmentation Demo")
|
56 |
+
|
57 |
+
with gr.Row():
|
58 |
+
input_text = gr.Textbox(label="Input Text", lines=5, placeholder="Enter text for segmentation")
|
59 |
+
output_text = gr.HighlightedText(label="Segmented Text", color_map=color_map, combine_adjacent=True)
|
60 |
+
|
61 |
+
def process(input_text):
|
62 |
+
return segment_text(input_text)
|
63 |
+
|
64 |
+
submit_button = gr.Button("Segment Text")
|
65 |
+
submit_button.click(fn=process, inputs=input_text, outputs=output_text)
|
66 |
+
|
67 |
+
if __name__ == "__main__":
|
68 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
transformers
|
3 |
+
accelerate
|