Spaces:
Running
on
Zero
Running
on
Zero
adds relevant indicators from structured product creation
Browse files
README.md
CHANGED
@@ -13,7 +13,7 @@ short_description: Use Amazon Chronos To Predict Stock Prices
|
|
13 |
|
14 |
# Stock Analysis and Prediction Demo
|
15 |
|
16 |
-
A comprehensive stock analysis and prediction tool built with Gradio, featuring multiple prediction strategies and technical analysis indicators.
|
17 |
|
18 |
## Features
|
19 |
|
@@ -25,7 +25,7 @@ A comprehensive stock analysis and prediction tool built with Gradio, featuring
|
|
25 |
- RSI (Relative Strength Index)
|
26 |
- MACD (Moving Average Convergence Divergence)
|
27 |
- Bollinger Bands
|
28 |
-
- Simple Moving Averages (20 and
|
29 |
|
30 |
- **Trading Signals**:
|
31 |
- Buy/Sell recommendations based on multiple indicators
|
@@ -38,6 +38,41 @@ A comprehensive stock analysis and prediction tool built with Gradio, featuring
|
|
38 |
- Volume analysis
|
39 |
- Historical price trends
|
40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
## Installation
|
42 |
|
43 |
1. Clone the repository:
|
@@ -68,10 +103,37 @@ python app.py
|
|
68 |
|
69 |
3. Enter a stock symbol (e.g., AAPL, GOOGL, MSFT) and select your desired parameters:
|
70 |
- Timeframe (1d, 1h, 15m)
|
71 |
-
- Number of days to predict
|
|
|
72 |
- Prediction strategy (Chronos or Technical)
|
73 |
|
74 |
-
4. Click "Analyze Stock" to get
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
## Prediction Strategies
|
77 |
|
|
|
13 |
|
14 |
# Stock Analysis and Prediction Demo
|
15 |
|
16 |
+
A comprehensive stock analysis and prediction tool built with Gradio, featuring multiple prediction strategies and technical analysis indicators. The application is particularly suited for structured financial product creation and analysis.
|
17 |
|
18 |
## Features
|
19 |
|
|
|
25 |
- RSI (Relative Strength Index)
|
26 |
- MACD (Moving Average Convergence Divergence)
|
27 |
- Bollinger Bands
|
28 |
+
- Simple Moving Averages (20, 50, and 200-day)
|
29 |
|
30 |
- **Trading Signals**:
|
31 |
- Buy/Sell recommendations based on multiple indicators
|
|
|
38 |
- Volume analysis
|
39 |
- Historical price trends
|
40 |
|
41 |
+
- **Structured Product Analysis**:
|
42 |
+
- Extended prediction horizons (up to 1 year)
|
43 |
+
- Historical analysis up to 10 years
|
44 |
+
- Comprehensive risk metrics
|
45 |
+
- Sector and industry analysis
|
46 |
+
- Liquidity assessment
|
47 |
+
|
48 |
+
## Structured Product Features
|
49 |
+
|
50 |
+
### Extended Time Horizons
|
51 |
+
- Prediction window up to 365 days
|
52 |
+
- Historical data analysis up to 10 years
|
53 |
+
- Long-term trend analysis
|
54 |
+
- Extended technical indicators
|
55 |
+
|
56 |
+
### Risk Analysis
|
57 |
+
- Annualized volatility
|
58 |
+
- Maximum drawdown analysis
|
59 |
+
- Current drawdown tracking
|
60 |
+
- Sharpe and Sortino ratios
|
61 |
+
- Risk-adjusted return metrics
|
62 |
+
|
63 |
+
### Product Metrics
|
64 |
+
- Market capitalization
|
65 |
+
- Sector and industry classification
|
66 |
+
- Dividend yield analysis
|
67 |
+
- Volume metrics
|
68 |
+
- Liquidity scoring
|
69 |
+
|
70 |
+
### Sector Analysis
|
71 |
+
- Market cap ranking (Large/Mid/Small)
|
72 |
+
- Sector exposure
|
73 |
+
- Industry classification
|
74 |
+
- Liquidity assessment
|
75 |
+
|
76 |
## Installation
|
77 |
|
78 |
1. Clone the repository:
|
|
|
103 |
|
104 |
3. Enter a stock symbol (e.g., AAPL, GOOGL, MSFT) and select your desired parameters:
|
105 |
- Timeframe (1d, 1h, 15m)
|
106 |
+
- Number of days to predict (up to 365 days)
|
107 |
+
- Historical lookback period (up to 10 years)
|
108 |
- Prediction strategy (Chronos or Technical)
|
109 |
|
110 |
+
4. Click "Analyze Stock" to get:
|
111 |
+
- Price predictions and trading signals
|
112 |
+
- Structured product metrics
|
113 |
+
- Risk analysis
|
114 |
+
- Sector analysis
|
115 |
+
|
116 |
+
## Using for Structured Products
|
117 |
+
|
118 |
+
### Initial Screening
|
119 |
+
1. Use extended lookback period (up to 10 years) for long-term performance analysis
|
120 |
+
2. Look for stocks with stable volatility and good risk-adjusted returns
|
121 |
+
3. Check liquidity scores for trading feasibility
|
122 |
+
|
123 |
+
### Risk Assessment
|
124 |
+
1. Review risk metrics to match client risk profile
|
125 |
+
2. Analyze maximum drawdowns for worst-case scenarios
|
126 |
+
3. Compare risk-adjusted returns using Sharpe and Sortino ratios
|
127 |
+
|
128 |
+
### Product Structuring
|
129 |
+
1. Use prediction horizon (up to 1 year) for product maturity design
|
130 |
+
2. Consider dividend yields for income-generating products
|
131 |
+
3. Use sector analysis for proper diversification
|
132 |
+
|
133 |
+
### Portfolio Construction
|
134 |
+
1. Analyze multiple stocks for diversified bundles
|
135 |
+
2. Use sector metrics to avoid overexposure
|
136 |
+
3. Consider market cap rankings for appropriate sizing
|
137 |
|
138 |
## Prediction Strategies
|
139 |
|
app.py
CHANGED
@@ -60,9 +60,17 @@ def get_historical_data(symbol: str, timeframe: str = "1d", lookback_days: int =
|
|
60 |
ticker = yf.Ticker(symbol)
|
61 |
df = ticker.history(start=start_date, end=end_date, interval=interval)
|
62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
# Calculate technical indicators
|
64 |
df['SMA_20'] = df['Close'].rolling(window=20).mean()
|
65 |
df['SMA_50'] = df['Close'].rolling(window=50).mean()
|
|
|
66 |
df['RSI'] = calculate_rsi(df['Close'])
|
67 |
df['MACD'], df['MACD_Signal'] = calculate_macd(df['Close'])
|
68 |
df['BB_Upper'], df['BB_Middle'], df['BB_Lower'] = calculate_bollinger_bands(df['Close'])
|
@@ -70,6 +78,16 @@ def get_historical_data(symbol: str, timeframe: str = "1d", lookback_days: int =
|
|
70 |
# Calculate returns and volatility
|
71 |
df['Returns'] = df['Close'].pct_change()
|
72 |
df['Volatility'] = df['Returns'].rolling(window=20).std()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
# Drop NaN values
|
75 |
df = df.dropna()
|
@@ -265,9 +283,9 @@ def calculate_trading_signals(df: pd.DataFrame) -> Dict:
|
|
265 |
|
266 |
def create_interface():
|
267 |
"""Create the Gradio interface"""
|
268 |
-
with gr.Blocks(title="
|
269 |
-
gr.Markdown("#
|
270 |
-
gr.Markdown("
|
271 |
|
272 |
with gr.Row():
|
273 |
with gr.Column():
|
@@ -279,11 +297,18 @@ def create_interface():
|
|
279 |
)
|
280 |
prediction_days = gr.Slider(
|
281 |
minimum=1,
|
282 |
-
maximum=
|
283 |
-
value=
|
284 |
step=1,
|
285 |
label="Days to Predict"
|
286 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
287 |
strategy = gr.Dropdown(
|
288 |
choices=["chronos", "technical"],
|
289 |
label="Prediction Strategy",
|
@@ -295,10 +320,56 @@ def create_interface():
|
|
295 |
plot = gr.Plot(label="Analysis and Prediction")
|
296 |
signals = gr.JSON(label="Trading Signals")
|
297 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
298 |
predict_btn.click(
|
299 |
-
fn=
|
300 |
-
inputs=[symbol, timeframe, prediction_days, strategy],
|
301 |
-
outputs=[signals, plot]
|
302 |
)
|
303 |
|
304 |
return demo
|
|
|
60 |
ticker = yf.Ticker(symbol)
|
61 |
df = ticker.history(start=start_date, end=end_date, interval=interval)
|
62 |
|
63 |
+
# Get additional info for structured products
|
64 |
+
info = ticker.info
|
65 |
+
df['Market_Cap'] = info.get('marketCap', None)
|
66 |
+
df['Sector'] = info.get('sector', None)
|
67 |
+
df['Industry'] = info.get('industry', None)
|
68 |
+
df['Dividend_Yield'] = info.get('dividendYield', None)
|
69 |
+
|
70 |
# Calculate technical indicators
|
71 |
df['SMA_20'] = df['Close'].rolling(window=20).mean()
|
72 |
df['SMA_50'] = df['Close'].rolling(window=50).mean()
|
73 |
+
df['SMA_200'] = df['Close'].rolling(window=200).mean()
|
74 |
df['RSI'] = calculate_rsi(df['Close'])
|
75 |
df['MACD'], df['MACD_Signal'] = calculate_macd(df['Close'])
|
76 |
df['BB_Upper'], df['BB_Middle'], df['BB_Lower'] = calculate_bollinger_bands(df['Close'])
|
|
|
78 |
# Calculate returns and volatility
|
79 |
df['Returns'] = df['Close'].pct_change()
|
80 |
df['Volatility'] = df['Returns'].rolling(window=20).std()
|
81 |
+
df['Annualized_Vol'] = df['Volatility'] * np.sqrt(252) # Annualized volatility
|
82 |
+
|
83 |
+
# Calculate drawdown metrics
|
84 |
+
df['Rolling_Max'] = df['Close'].rolling(window=252, min_periods=1).max()
|
85 |
+
df['Drawdown'] = (df['Close'] - df['Rolling_Max']) / df['Rolling_Max']
|
86 |
+
df['Max_Drawdown'] = df['Drawdown'].rolling(window=252, min_periods=1).min()
|
87 |
+
|
88 |
+
# Calculate liquidity metrics
|
89 |
+
df['Avg_Daily_Volume'] = df['Volume'].rolling(window=20).mean()
|
90 |
+
df['Volume_Volatility'] = df['Volume'].rolling(window=20).std()
|
91 |
|
92 |
# Drop NaN values
|
93 |
df = df.dropna()
|
|
|
283 |
|
284 |
def create_interface():
|
285 |
"""Create the Gradio interface"""
|
286 |
+
with gr.Blocks(title="Structured Product Analysis") as demo:
|
287 |
+
gr.Markdown("# Structured Product Analysis")
|
288 |
+
gr.Markdown("Analyze stocks for inclusion in structured financial products with extended time horizons.")
|
289 |
|
290 |
with gr.Row():
|
291 |
with gr.Column():
|
|
|
297 |
)
|
298 |
prediction_days = gr.Slider(
|
299 |
minimum=1,
|
300 |
+
maximum=365, # Extended to 1 year
|
301 |
+
value=30,
|
302 |
step=1,
|
303 |
label="Days to Predict"
|
304 |
)
|
305 |
+
lookback_days = gr.Slider(
|
306 |
+
minimum=365,
|
307 |
+
maximum=3650, # 10 years of history
|
308 |
+
value=365,
|
309 |
+
step=30,
|
310 |
+
label="Historical Lookback (Days)"
|
311 |
+
)
|
312 |
strategy = gr.Dropdown(
|
313 |
choices=["chronos", "technical"],
|
314 |
label="Prediction Strategy",
|
|
|
320 |
plot = gr.Plot(label="Analysis and Prediction")
|
321 |
signals = gr.JSON(label="Trading Signals")
|
322 |
|
323 |
+
with gr.Row():
|
324 |
+
with gr.Column():
|
325 |
+
gr.Markdown("### Structured Product Metrics")
|
326 |
+
metrics = gr.JSON(label="Product Metrics")
|
327 |
+
|
328 |
+
gr.Markdown("### Risk Analysis")
|
329 |
+
risk_metrics = gr.JSON(label="Risk Metrics")
|
330 |
+
|
331 |
+
gr.Markdown("### Sector Analysis")
|
332 |
+
sector_metrics = gr.JSON(label="Sector Metrics")
|
333 |
+
|
334 |
+
def analyze_stock(symbol, timeframe, prediction_days, lookback_days, strategy):
|
335 |
+
signals, fig = make_prediction(symbol, timeframe, prediction_days, strategy)
|
336 |
+
|
337 |
+
# Get historical data for additional metrics
|
338 |
+
df = get_historical_data(symbol, timeframe, lookback_days)
|
339 |
+
|
340 |
+
# Calculate structured product metrics
|
341 |
+
product_metrics = {
|
342 |
+
"Market_Cap": df['Market_Cap'].iloc[-1],
|
343 |
+
"Sector": df['Sector'].iloc[-1],
|
344 |
+
"Industry": df['Industry'].iloc[-1],
|
345 |
+
"Dividend_Yield": df['Dividend_Yield'].iloc[-1],
|
346 |
+
"Avg_Daily_Volume": df['Avg_Daily_Volume'].iloc[-1],
|
347 |
+
"Volume_Volatility": df['Volume_Volatility'].iloc[-1]
|
348 |
+
}
|
349 |
+
|
350 |
+
# Calculate risk metrics
|
351 |
+
risk_metrics = {
|
352 |
+
"Annualized_Volatility": df['Annualized_Vol'].iloc[-1],
|
353 |
+
"Max_Drawdown": df['Max_Drawdown'].iloc[-1],
|
354 |
+
"Current_Drawdown": df['Drawdown'].iloc[-1],
|
355 |
+
"Sharpe_Ratio": (df['Returns'].mean() * 252) / (df['Returns'].std() * np.sqrt(252)),
|
356 |
+
"Sortino_Ratio": (df['Returns'].mean() * 252) / (df['Returns'][df['Returns'] < 0].std() * np.sqrt(252))
|
357 |
+
}
|
358 |
+
|
359 |
+
# Calculate sector metrics
|
360 |
+
sector_metrics = {
|
361 |
+
"Sector": df['Sector'].iloc[-1],
|
362 |
+
"Industry": df['Industry'].iloc[-1],
|
363 |
+
"Market_Cap_Rank": "Large" if df['Market_Cap'].iloc[-1] > 1e10 else "Mid" if df['Market_Cap'].iloc[-1] > 1e9 else "Small",
|
364 |
+
"Liquidity_Score": "High" if df['Avg_Daily_Volume'].iloc[-1] > 1e6 else "Medium" if df['Avg_Daily_Volume'].iloc[-1] > 1e5 else "Low"
|
365 |
+
}
|
366 |
+
|
367 |
+
return signals, fig, product_metrics, risk_metrics, sector_metrics
|
368 |
+
|
369 |
predict_btn.click(
|
370 |
+
fn=analyze_stock,
|
371 |
+
inputs=[symbol, timeframe, prediction_days, lookback_days, strategy],
|
372 |
+
outputs=[signals, plot, metrics, risk_metrics, sector_metrics]
|
373 |
)
|
374 |
|
375 |
return demo
|