Spaces:
Running
on
Zero
Running
on
Zero
improve smoothing , normalization , solves discontinuity , improves denormalization , improves recursive forcasting
Browse files
app.py
CHANGED
@@ -370,7 +370,8 @@ def calculate_bollinger_bands(prices: pd.Series, period: int = 20, std_dev: int
|
|
370 |
def make_prediction(symbol: str, timeframe: str = "1d", prediction_days: int = 5, strategy: str = "chronos",
|
371 |
use_ensemble: bool = True, use_regime_detection: bool = True, use_stress_testing: bool = True,
|
372 |
risk_free_rate: float = 0.02, ensemble_weights: Dict = None,
|
373 |
-
market_index: str = "^GSPC"
|
|
|
374 |
"""
|
375 |
Make prediction using selected strategy with advanced features.
|
376 |
|
@@ -385,6 +386,7 @@ def make_prediction(symbol: str, timeframe: str = "1d", prediction_days: int = 5
|
|
385 |
risk_free_rate (float): Risk-free rate for calculations
|
386 |
ensemble_weights (Dict): Weights for ensemble models
|
387 |
market_index (str): Market index for correlation analysis
|
|
|
388 |
|
389 |
Returns:
|
390 |
Tuple[Dict, go.Figure]: Trading signals and visualization plot
|
@@ -397,10 +399,13 @@ def make_prediction(symbol: str, timeframe: str = "1d", prediction_days: int = 5
|
|
397 |
try:
|
398 |
# Prepare data for Chronos
|
399 |
prices = df['Close'].values
|
400 |
-
|
|
|
|
|
|
|
401 |
|
402 |
# Ensure we have enough data points
|
403 |
-
min_data_points =
|
404 |
if len(normalized_prices) < min_data_points:
|
405 |
padding = np.full(min_data_points - len(normalized_prices), normalized_prices[-1])
|
406 |
normalized_prices = np.concatenate([padding, normalized_prices])
|
@@ -421,23 +426,17 @@ def make_prediction(symbol: str, timeframe: str = "1d", prediction_days: int = 5
|
|
421 |
|
422 |
# Adjust prediction length based on timeframe
|
423 |
if timeframe == "1d":
|
424 |
-
max_prediction_length =
|
425 |
-
window_size = 64 # Use full context window
|
426 |
-
elif timeframe == "1h":
|
427 |
-
max_prediction_length = 64 # Chronos maximum
|
428 |
-
window_size = 64 # Use full context window
|
429 |
-
else: # 15m
|
430 |
-
max_prediction_length = 64 # Chronos maximum
|
431 |
-
window_size = 64 # Use full context window
|
432 |
-
|
433 |
-
# Calculate actual prediction length based on timeframe
|
434 |
-
if timeframe == "1d":
|
435 |
actual_prediction_length = min(prediction_days, max_prediction_length)
|
|
|
436 |
elif timeframe == "1h":
|
|
|
437 |
actual_prediction_length = min(prediction_days * 24, max_prediction_length)
|
|
|
438 |
else: # 15m
|
|
|
439 |
actual_prediction_length = min(prediction_days * 96, max_prediction_length)
|
440 |
-
|
441 |
actual_prediction_length = max(1, actual_prediction_length)
|
442 |
|
443 |
# Use predict_quantiles with proper formatting
|
@@ -628,7 +627,7 @@ def make_prediction(symbol: str, timeframe: str = "1d", prediction_days: int = 5
|
|
628 |
quantiles = quantiles.detach().cpu().numpy()
|
629 |
mean = mean.detach().cpu().numpy()
|
630 |
|
631 |
-
# Denormalize predictions
|
632 |
mean_pred = scaler.inverse_transform(mean.reshape(-1, 1)).flatten()
|
633 |
lower_bound = scaler.inverse_transform(quantiles[0, :, 0].reshape(-1, 1)).flatten()
|
634 |
upper_bound = scaler.inverse_transform(quantiles[0, :, 2].reshape(-1, 1)).flatten()
|
@@ -636,37 +635,39 @@ def make_prediction(symbol: str, timeframe: str = "1d", prediction_days: int = 5
|
|
636 |
# Calculate standard deviation from quantiles
|
637 |
std_pred = (upper_bound - lower_bound) / (2 * 1.645)
|
638 |
|
639 |
-
#
|
640 |
-
|
641 |
-
|
|
|
|
|
|
|
|
|
|
|
642 |
extended_mean_pred = mean_pred.copy()
|
643 |
extended_std_pred = std_pred.copy()
|
644 |
|
645 |
# Calculate the number of extension steps needed
|
646 |
-
|
647 |
-
steps_needed = (
|
648 |
-
|
649 |
for step in range(steps_needed):
|
650 |
-
# Use the last window_size points as context for next prediction
|
651 |
-
context_window = extended_mean_pred[-window_size:]
|
652 |
-
|
653 |
-
# Normalize the context window
|
654 |
-
normalized_context = scaler.fit_transform(context_window.reshape(-1, 1)).flatten()
|
655 |
|
|
|
|
|
|
|
|
|
656 |
# Convert to tensor and ensure proper shape
|
|
|
657 |
context = torch.tensor(normalized_context, dtype=dtype, device=device)
|
658 |
if len(context.shape) == 1:
|
659 |
context = context.unsqueeze(0)
|
660 |
|
661 |
# Calculate next prediction length based on timeframe
|
662 |
if timeframe == "1d":
|
663 |
-
next_length = min(max_prediction_length,
|
664 |
elif timeframe == "1h":
|
665 |
-
next_length = min(max_prediction_length,
|
666 |
-
else:
|
667 |
-
next_length = min(max_prediction_length,
|
668 |
-
|
669 |
-
# Make prediction for next window
|
670 |
with torch.amp.autocast('cuda'):
|
671 |
next_quantiles, next_mean = pipe.predict_quantiles(
|
672 |
context=context,
|
@@ -685,38 +686,19 @@ def make_prediction(symbol: str, timeframe: str = "1d", prediction_days: int = 5
|
|
685 |
|
686 |
# Calculate standard deviation
|
687 |
next_std_pred = (next_upper - next_lower) / (2 * 1.645)
|
688 |
-
|
689 |
-
|
690 |
-
|
691 |
-
alpha = 0.3 # Smoothing factor
|
692 |
-
next_mean_pred = alpha * next_mean_pred + (1 - alpha) * extended_mean_pred[-len(next_mean_pred):]
|
693 |
-
next_std_pred = alpha * next_std_pred + (1 - alpha) * extended_std_pred[-len(next_std_pred):]
|
694 |
-
|
695 |
# Append predictions
|
696 |
extended_mean_pred = np.concatenate([extended_mean_pred, next_mean_pred])
|
697 |
extended_std_pred = np.concatenate([extended_std_pred, next_std_pred])
|
698 |
-
|
699 |
-
|
700 |
-
if timeframe == "1d":
|
701 |
-
remaining_days -= len(next_mean_pred)
|
702 |
-
elif timeframe == "1h":
|
703 |
-
remaining_days -= len(next_mean_pred) / 24
|
704 |
-
else: # 15m
|
705 |
-
remaining_days -= len(next_mean_pred) / 96
|
706 |
-
|
707 |
-
if remaining_days <= 0:
|
708 |
break
|
709 |
|
710 |
# Trim to exact prediction length if needed
|
711 |
-
|
712 |
-
|
713 |
-
std_pred = extended_std_pred[:prediction_days]
|
714 |
-
elif timeframe == "1h":
|
715 |
-
mean_pred = extended_mean_pred[:prediction_days * 24]
|
716 |
-
std_pred = extended_std_pred[:prediction_days * 24]
|
717 |
-
else: # 15m
|
718 |
-
mean_pred = extended_mean_pred[:prediction_days * 96]
|
719 |
-
std_pred = extended_std_pred[:prediction_days * 96]
|
720 |
|
721 |
# Extend Chronos forecasting to volume and technical indicators
|
722 |
volume_pred = None
|
@@ -728,118 +710,276 @@ def make_prediction(symbol: str, timeframe: str = "1d", prediction_days: int = 5
|
|
728 |
volume_data = df['Volume'].values
|
729 |
if len(volume_data) >= 64:
|
730 |
# Normalize volume data
|
|
|
|
|
731 |
volume_scaler = MinMaxScaler(feature_range=(-1, 1))
|
732 |
-
normalized_volume = volume_scaler.fit_transform(
|
733 |
-
|
734 |
-
|
735 |
-
|
736 |
-
|
737 |
-
|
738 |
-
|
739 |
-
|
740 |
-
|
741 |
with torch.amp.autocast('cuda'):
|
742 |
volume_quantiles, volume_mean = pipe.predict_quantiles(
|
743 |
-
context=
|
744 |
-
prediction_length=
|
745 |
quantile_levels=[0.1, 0.5, 0.9]
|
746 |
)
|
747 |
-
|
748 |
-
# Convert and denormalize volume predictions
|
749 |
volume_mean = volume_mean.detach().cpu().numpy()
|
750 |
volume_pred = volume_scaler.inverse_transform(volume_mean.reshape(-1, 1)).flatten()
|
751 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
752 |
# Extend volume predictions if needed
|
753 |
-
if
|
754 |
-
|
755 |
-
|
756 |
-
|
757 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
758 |
except Exception as e:
|
759 |
print(f"Volume prediction error: {str(e)}")
|
760 |
# Fallback: use historical average
|
761 |
avg_volume = df['Volume'].mean()
|
762 |
-
volume_pred = np.full(
|
763 |
-
|
764 |
try:
|
765 |
# Prepare RSI data for Chronos
|
766 |
rsi_data = df['RSI'].values
|
767 |
if len(rsi_data) >= 64 and not np.any(np.isnan(rsi_data)):
|
768 |
# RSI is already normalized (0-100), but we'll scale it to (-1, 1)
|
|
|
|
|
769 |
rsi_scaler = MinMaxScaler(feature_range=(-1, 1))
|
770 |
-
normalized_rsi = rsi_scaler.fit_transform(
|
771 |
-
|
772 |
-
|
773 |
-
|
774 |
-
|
775 |
-
|
776 |
-
|
777 |
-
|
778 |
-
|
779 |
with torch.amp.autocast('cuda'):
|
780 |
rsi_quantiles, rsi_mean = pipe.predict_quantiles(
|
781 |
-
context=
|
782 |
-
prediction_length=
|
783 |
quantile_levels=[0.1, 0.5, 0.9]
|
784 |
)
|
785 |
-
|
786 |
# Convert and denormalize RSI predictions
|
|
|
787 |
rsi_mean = rsi_mean.detach().cpu().numpy()
|
788 |
rsi_pred = rsi_scaler.inverse_transform(rsi_mean.reshape(-1, 1)).flatten()
|
789 |
-
|
790 |
# Clamp RSI to valid range (0-100)
|
|
|
|
|
|
|
791 |
rsi_pred = np.clip(rsi_pred, 0, 100)
|
792 |
-
|
|
|
|
|
|
|
793 |
# Extend RSI predictions if needed
|
794 |
-
if
|
795 |
-
|
796 |
-
|
797 |
-
|
798 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
799 |
except Exception as e:
|
800 |
print(f"RSI prediction error: {str(e)}")
|
801 |
# Fallback: use last known RSI value
|
802 |
last_rsi = df['RSI'].iloc[-1]
|
803 |
-
rsi_pred = np.full(
|
804 |
-
|
805 |
try:
|
806 |
# Prepare MACD data for Chronos
|
807 |
macd_data = df['MACD'].values
|
808 |
if len(macd_data) >= 64 and not np.any(np.isnan(macd_data)):
|
809 |
# Normalize MACD data
|
|
|
|
|
810 |
macd_scaler = MinMaxScaler(feature_range=(-1, 1))
|
811 |
-
normalized_macd = macd_scaler.fit_transform(
|
812 |
-
|
813 |
-
|
814 |
-
|
815 |
-
|
816 |
-
|
817 |
-
|
818 |
-
|
819 |
-
|
820 |
with torch.amp.autocast('cuda'):
|
821 |
macd_quantiles, macd_mean = pipe.predict_quantiles(
|
822 |
-
context=
|
823 |
-
prediction_length=
|
824 |
quantile_levels=[0.1, 0.5, 0.9]
|
825 |
)
|
826 |
-
|
827 |
# Convert and denormalize MACD predictions
|
|
|
828 |
macd_mean = macd_mean.detach().cpu().numpy()
|
829 |
macd_pred = macd_scaler.inverse_transform(macd_mean.reshape(-1, 1)).flatten()
|
830 |
-
|
|
|
|
|
|
|
|
|
|
|
831 |
# Extend MACD predictions if needed
|
832 |
-
if
|
833 |
-
|
834 |
-
|
835 |
-
|
836 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
837 |
except Exception as e:
|
838 |
print(f"MACD prediction error: {str(e)}")
|
839 |
# Fallback: use last known MACD value
|
840 |
last_macd = df['MACD'].iloc[-1]
|
841 |
-
macd_pred = np.full(
|
842 |
-
|
843 |
except Exception as e:
|
844 |
print(f"Chronos prediction error: {str(e)}")
|
845 |
print(f"Error type: {type(e)}")
|
@@ -1756,6 +1896,13 @@ def create_interface():
|
|
1756 |
label="Market Index for Correlation",
|
1757 |
value="^GSPC"
|
1758 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1759 |
|
1760 |
with gr.Column():
|
1761 |
gr.Markdown("### Ensemble Weights")
|
@@ -1969,7 +2116,8 @@ def create_interface():
|
|
1969 |
|
1970 |
def analyze_stock(symbol, timeframe, prediction_days, lookback_days, strategy,
|
1971 |
use_ensemble, use_regime_detection, use_stress_testing,
|
1972 |
-
risk_free_rate, market_index, chronos_weight, technical_weight, statistical_weight
|
|
|
1973 |
try:
|
1974 |
# Create ensemble weights
|
1975 |
ensemble_weights = {
|
@@ -1993,7 +2141,8 @@ def create_interface():
|
|
1993 |
use_stress_testing=use_stress_testing,
|
1994 |
risk_free_rate=risk_free_rate,
|
1995 |
ensemble_weights=ensemble_weights,
|
1996 |
-
market_index=market_index
|
|
|
1997 |
)
|
1998 |
|
1999 |
# Get historical data for additional metrics
|
@@ -2075,7 +2224,8 @@ def create_interface():
|
|
2075 |
|
2076 |
# Daily analysis button click
|
2077 |
def daily_analysis(s: str, pd: int, ld: int, st: str, ue: bool, urd: bool, ust: bool,
|
2078 |
-
rfr: float, mi: str, cw: float, tw: float, sw: float
|
|
|
2079 |
"""
|
2080 |
Process daily timeframe stock analysis with advanced features.
|
2081 |
|
@@ -2109,6 +2259,7 @@ def create_interface():
|
|
2109 |
Weight given to technical analysis predictions in ensemble methods
|
2110 |
sw (float): Statistical weight in ensemble (0.0-1.0)
|
2111 |
Weight given to statistical model predictions in ensemble methods
|
|
|
2112 |
|
2113 |
Returns:
|
2114 |
Tuple[Dict, go.Figure, Dict, Dict, Dict, Dict, Dict, Dict, Dict]: Analysis results containing:
|
@@ -2128,7 +2279,7 @@ def create_interface():
|
|
2128 |
|
2129 |
Example:
|
2130 |
>>> signals, plot, metrics, risk, sector, regime, stress, ensemble, advanced = daily_analysis(
|
2131 |
-
... "AAPL", 30, 365, "chronos", True, True, True, 0.02, "^GSPC", 0.6, 0.2, 0.2
|
2132 |
... )
|
2133 |
|
2134 |
Notes:
|
@@ -2138,20 +2289,22 @@ def create_interface():
|
|
2138 |
- Ensemble weights should sum to 1.0 for optimal results
|
2139 |
- Risk-free rate is typically between 0.02-0.05 (2-5% annually)
|
2140 |
"""
|
2141 |
-
return analyze_stock(s, "1d", pd, ld, st, ue, urd, ust, rfr, mi, cw, tw, sw)
|
2142 |
|
2143 |
daily_predict_btn.click(
|
2144 |
fn=daily_analysis,
|
2145 |
inputs=[daily_symbol, daily_prediction_days, daily_lookback_days, daily_strategy,
|
2146 |
use_ensemble, use_regime_detection, use_stress_testing, risk_free_rate, market_index,
|
2147 |
-
chronos_weight, technical_weight, statistical_weight
|
|
|
2148 |
outputs=[daily_signals, daily_plot, daily_metrics, daily_risk_metrics, daily_sector_metrics,
|
2149 |
daily_regime_metrics, daily_stress_results, daily_ensemble_metrics, daily_signals_advanced]
|
2150 |
)
|
2151 |
|
2152 |
# Hourly analysis button click
|
2153 |
def hourly_analysis(s: str, pd: int, ld: int, st: str, ue: bool, urd: bool, ust: bool,
|
2154 |
-
rfr: float, mi: str, cw: float, tw: float, sw: float
|
|
|
2155 |
"""
|
2156 |
Process hourly timeframe stock analysis with advanced features.
|
2157 |
|
@@ -2185,6 +2338,7 @@ def create_interface():
|
|
2185 |
Weight for technical analysis in ensemble predictions
|
2186 |
sw (float): Statistical weight in ensemble (0.0-1.0)
|
2187 |
Weight for statistical models in ensemble predictions
|
|
|
2188 |
|
2189 |
Returns:
|
2190 |
Tuple[Dict, go.Figure, Dict, Dict, Dict, Dict, Dict, Dict, Dict]: Analysis results containing:
|
@@ -2204,7 +2358,7 @@ def create_interface():
|
|
2204 |
|
2205 |
Example:
|
2206 |
>>> signals, plot, metrics, risk, sector, regime, stress, ensemble, advanced = hourly_analysis(
|
2207 |
-
... "AAPL", 3, 14, "chronos", True, True, True, 0.02, "^GSPC", 0.6, 0.2, 0.2
|
2208 |
... )
|
2209 |
|
2210 |
Notes:
|
@@ -2215,20 +2369,22 @@ def create_interface():
|
|
2215 |
- Optimized for day trading and swing trading strategies
|
2216 |
- Requires high-liquidity stocks for reliable hourly analysis
|
2217 |
"""
|
2218 |
-
return analyze_stock(s, "1h", pd, ld, st, ue, urd, ust, rfr, mi, cw, tw, sw)
|
2219 |
|
2220 |
hourly_predict_btn.click(
|
2221 |
fn=hourly_analysis,
|
2222 |
inputs=[hourly_symbol, hourly_prediction_days, hourly_lookback_days, hourly_strategy,
|
2223 |
use_ensemble, use_regime_detection, use_stress_testing, risk_free_rate, market_index,
|
2224 |
-
chronos_weight, technical_weight, statistical_weight
|
|
|
2225 |
outputs=[hourly_signals, hourly_plot, hourly_metrics, hourly_risk_metrics, hourly_sector_metrics,
|
2226 |
hourly_regime_metrics, hourly_stress_results, hourly_ensemble_metrics, hourly_signals_advanced]
|
2227 |
)
|
2228 |
|
2229 |
# 15-minute analysis button click
|
2230 |
def min15_analysis(s: str, pd: int, ld: int, st: str, ue: bool, urd: bool, ust: bool,
|
2231 |
-
rfr: float, mi: str, cw: float, tw: float, sw: float
|
|
|
2232 |
"""
|
2233 |
Process 15-minute timeframe stock analysis with advanced features.
|
2234 |
|
@@ -2262,6 +2418,7 @@ def create_interface():
|
|
2262 |
Weight for technical analysis in ensemble predictions
|
2263 |
sw (float): Statistical weight in ensemble (0.0-1.0)
|
2264 |
Weight for statistical models in ensemble predictions
|
|
|
2265 |
|
2266 |
Returns:
|
2267 |
Tuple[Dict, go.Figure, Dict, Dict, Dict, Dict, Dict, Dict, Dict]: Analysis results containing:
|
@@ -2281,7 +2438,7 @@ def create_interface():
|
|
2281 |
|
2282 |
Example:
|
2283 |
>>> signals, plot, metrics, risk, sector, regime, stress, ensemble, advanced = min15_analysis(
|
2284 |
-
... "AAPL", 1, 3, "chronos", True, True, True, 0.02, "^GSPC", 0.6, 0.2, 0.2
|
2285 |
... )
|
2286 |
|
2287 |
Notes:
|
@@ -2294,13 +2451,14 @@ def create_interface():
|
|
2294 |
- Higher transaction costs and slippage considerations for 15-minute strategies
|
2295 |
- Best suited for highly liquid large-cap stocks with tight bid-ask spreads
|
2296 |
"""
|
2297 |
-
return analyze_stock(s, "15m", pd, ld, st, ue, urd, ust, rfr, mi, cw, tw, sw)
|
2298 |
|
2299 |
min15_predict_btn.click(
|
2300 |
fn=min15_analysis,
|
2301 |
inputs=[min15_symbol, min15_prediction_days, min15_lookback_days, min15_strategy,
|
2302 |
use_ensemble, use_regime_detection, use_stress_testing, risk_free_rate, market_index,
|
2303 |
-
chronos_weight, technical_weight, statistical_weight
|
|
|
2304 |
outputs=[min15_signals, min15_plot, min15_metrics, min15_risk_metrics, min15_sector_metrics,
|
2305 |
min15_regime_metrics, min15_stress_results, min15_ensemble_metrics, min15_signals_advanced]
|
2306 |
)
|
|
|
370 |
def make_prediction(symbol: str, timeframe: str = "1d", prediction_days: int = 5, strategy: str = "chronos",
|
371 |
use_ensemble: bool = True, use_regime_detection: bool = True, use_stress_testing: bool = True,
|
372 |
risk_free_rate: float = 0.02, ensemble_weights: Dict = None,
|
373 |
+
market_index: str = "^GSPC",
|
374 |
+
random_real_points: int = 4) -> Tuple[Dict, go.Figure]:
|
375 |
"""
|
376 |
Make prediction using selected strategy with advanced features.
|
377 |
|
|
|
386 |
risk_free_rate (float): Risk-free rate for calculations
|
387 |
ensemble_weights (Dict): Weights for ensemble models
|
388 |
market_index (str): Market index for correlation analysis
|
389 |
+
random_real_points (int): Number of random real points to include in long-horizon context
|
390 |
|
391 |
Returns:
|
392 |
Tuple[Dict, go.Figure]: Trading signals and visualization plot
|
|
|
399 |
try:
|
400 |
# Prepare data for Chronos
|
401 |
prices = df['Close'].values
|
402 |
+
window_size = 64 # Chronos context window size
|
403 |
+
context_window = prices[-window_size:]
|
404 |
+
scaler = MinMaxScaler(feature_range=(-1, 1))
|
405 |
+
normalized_prices = scaler.fit_transform(context_window.reshape(-1, 1)).flatten()
|
406 |
|
407 |
# Ensure we have enough data points
|
408 |
+
min_data_points = window_size
|
409 |
if len(normalized_prices) < min_data_points:
|
410 |
padding = np.full(min_data_points - len(normalized_prices), normalized_prices[-1])
|
411 |
normalized_prices = np.concatenate([padding, normalized_prices])
|
|
|
426 |
|
427 |
# Adjust prediction length based on timeframe
|
428 |
if timeframe == "1d":
|
429 |
+
max_prediction_length = window_size # 64 days
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
430 |
actual_prediction_length = min(prediction_days, max_prediction_length)
|
431 |
+
trim_length = prediction_days
|
432 |
elif timeframe == "1h":
|
433 |
+
max_prediction_length = window_size # 64 hours
|
434 |
actual_prediction_length = min(prediction_days * 24, max_prediction_length)
|
435 |
+
trim_length = prediction_days * 24
|
436 |
else: # 15m
|
437 |
+
max_prediction_length = window_size # 64 intervals
|
438 |
actual_prediction_length = min(prediction_days * 96, max_prediction_length)
|
439 |
+
trim_length = prediction_days * 96
|
440 |
actual_prediction_length = max(1, actual_prediction_length)
|
441 |
|
442 |
# Use predict_quantiles with proper formatting
|
|
|
627 |
quantiles = quantiles.detach().cpu().numpy()
|
628 |
mean = mean.detach().cpu().numpy()
|
629 |
|
630 |
+
# Denormalize predictions using the same scaler as context
|
631 |
mean_pred = scaler.inverse_transform(mean.reshape(-1, 1)).flatten()
|
632 |
lower_bound = scaler.inverse_transform(quantiles[0, :, 0].reshape(-1, 1)).flatten()
|
633 |
upper_bound = scaler.inverse_transform(quantiles[0, :, 2].reshape(-1, 1)).flatten()
|
|
|
635 |
# Calculate standard deviation from quantiles
|
636 |
std_pred = (upper_bound - lower_bound) / (2 * 1.645)
|
637 |
|
638 |
+
# Check for discontinuity between last actual and first prediction
|
639 |
+
last_actual = prices[-1]
|
640 |
+
first_pred = mean_pred[0]
|
641 |
+
if abs(first_pred - last_actual) > max(1e-6, 0.05 * abs(last_actual)):
|
642 |
+
print(f"Warning: Discontinuity detected between last actual ({last_actual}) and first prediction ({first_pred})")
|
643 |
+
|
644 |
+
# If we had to limit the prediction length, extend the prediction recursively
|
645 |
+
if actual_prediction_length < trim_length:
|
646 |
extended_mean_pred = mean_pred.copy()
|
647 |
extended_std_pred = std_pred.copy()
|
648 |
|
649 |
# Calculate the number of extension steps needed
|
650 |
+
remaining_steps = trim_length - actual_prediction_length
|
651 |
+
steps_needed = (remaining_steps + actual_prediction_length - 1) // actual_prediction_length
|
|
|
652 |
for step in range(steps_needed):
|
|
|
|
|
|
|
|
|
|
|
653 |
|
654 |
+
# Use last window_size points as context for next prediction
|
655 |
+
context_window = np.concatenate([prices, extended_mean_pred])[-window_size:]
|
656 |
+
scaler = MinMaxScaler(feature_range=(-1, 1))
|
657 |
+
|
658 |
# Convert to tensor and ensure proper shape
|
659 |
+
normalized_context = scaler.fit_transform(context_window.reshape(-1, 1)).flatten()
|
660 |
context = torch.tensor(normalized_context, dtype=dtype, device=device)
|
661 |
if len(context.shape) == 1:
|
662 |
context = context.unsqueeze(0)
|
663 |
|
664 |
# Calculate next prediction length based on timeframe
|
665 |
if timeframe == "1d":
|
666 |
+
next_length = min(max_prediction_length, remaining_steps)
|
667 |
elif timeframe == "1h":
|
668 |
+
next_length = min(max_prediction_length, remaining_steps)
|
669 |
+
else:
|
670 |
+
next_length = min(max_prediction_length, remaining_steps)
|
|
|
|
|
671 |
with torch.amp.autocast('cuda'):
|
672 |
next_quantiles, next_mean = pipe.predict_quantiles(
|
673 |
context=context,
|
|
|
686 |
|
687 |
# Calculate standard deviation
|
688 |
next_std_pred = (next_upper - next_lower) / (2 * 1.645)
|
689 |
+
if abs(next_mean_pred[0] - extended_mean_pred[-1]) > max(1e-6, 0.05 * abs(extended_mean_pred[-1])):
|
690 |
+
print(f"Warning: Discontinuity detected between last prediction ({extended_mean_pred[-1]}) and next prediction ({next_mean_pred[0]})")
|
691 |
+
|
|
|
|
|
|
|
|
|
692 |
# Append predictions
|
693 |
extended_mean_pred = np.concatenate([extended_mean_pred, next_mean_pred])
|
694 |
extended_std_pred = np.concatenate([extended_std_pred, next_std_pred])
|
695 |
+
remaining_steps -= len(next_mean_pred)
|
696 |
+
if remaining_steps <= 0:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
697 |
break
|
698 |
|
699 |
# Trim to exact prediction length if needed
|
700 |
+
mean_pred = extended_mean_pred[:trim_length]
|
701 |
+
std_pred = extended_std_pred[:trim_length]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
702 |
|
703 |
# Extend Chronos forecasting to volume and technical indicators
|
704 |
volume_pred = None
|
|
|
710 |
volume_data = df['Volume'].values
|
711 |
if len(volume_data) >= 64:
|
712 |
# Normalize volume data
|
713 |
+
window_size = 64
|
714 |
+
context_window = volume_data[-window_size:]
|
715 |
volume_scaler = MinMaxScaler(feature_range=(-1, 1))
|
716 |
+
normalized_volume = volume_scaler.fit_transform(context_window.reshape(-1, 1)).flatten()
|
717 |
+
if len(normalized_volume) < window_size:
|
718 |
+
padding = np.full(window_size - len(normalized_volume), normalized_volume[-1])
|
719 |
+
normalized_volume = np.concatenate([padding, normalized_volume])
|
720 |
+
elif len(normalized_volume) > window_size:
|
721 |
+
normalized_volume = normalized_volume[-window_size:]
|
722 |
+
volume_context = torch.tensor(normalized_volume, dtype=dtype, device=device)
|
723 |
+
if len(volume_context.shape) == 1:
|
724 |
+
volume_context = volume_context.unsqueeze(0)
|
725 |
with torch.amp.autocast('cuda'):
|
726 |
volume_quantiles, volume_mean = pipe.predict_quantiles(
|
727 |
+
context=volume_context,
|
728 |
+
prediction_length=actual_prediction_length,
|
729 |
quantile_levels=[0.1, 0.5, 0.9]
|
730 |
)
|
731 |
+
volume_quantiles = volume_quantiles.detach().cpu().numpy()
|
|
|
732 |
volume_mean = volume_mean.detach().cpu().numpy()
|
733 |
volume_pred = volume_scaler.inverse_transform(volume_mean.reshape(-1, 1)).flatten()
|
734 |
+
lower_bound = volume_scaler.inverse_transform(volume_quantiles[0, :, 0].reshape(-1, 1)).flatten()
|
735 |
+
upper_bound = volume_scaler.inverse_transform(volume_quantiles[0, :, 2].reshape(-1, 1)).flatten()
|
736 |
+
std_pred_vol = (upper_bound - lower_bound) / (2 * 1.645)
|
737 |
+
last_actual = volume_data[-1]
|
738 |
+
first_pred = volume_pred[0]
|
739 |
+
if abs(first_pred - last_actual) > max(1e-6, 0.05 * abs(last_actual)):
|
740 |
+
print(f"Warning: Discontinuity detected between last actual volume ({last_actual}) and first prediction ({first_pred})")
|
741 |
+
|
742 |
# Extend volume predictions if needed
|
743 |
+
if actual_prediction_length < trim_length:
|
744 |
+
extended_mean_pred = volume_pred.copy()
|
745 |
+
extended_std_pred = std_pred_vol.copy()
|
746 |
+
remaining_steps = trim_length - actual_prediction_length
|
747 |
+
steps_needed = (remaining_steps + actual_prediction_length - 1) // actual_prediction_length
|
748 |
+
for step in range(steps_needed):
|
749 |
+
# Use as much actual data as possible, then fill with predictions
|
750 |
+
n_actual = max(0, window_size - len(extended_mean_pred))
|
751 |
+
n_pred = window_size - n_actual
|
752 |
+
if n_actual > 0:
|
753 |
+
context_window = np.concatenate([
|
754 |
+
volume_data[-n_actual:],
|
755 |
+
extended_mean_pred[-n_pred:] if n_pred > 0 else np.array([])
|
756 |
+
])
|
757 |
+
else:
|
758 |
+
# All synthetic, but add a few random real points
|
759 |
+
n_random_real = min(random_real_points, len(volume_data))
|
760 |
+
random_real = np.random.choice(volume_data, size=n_random_real, replace=False)
|
761 |
+
context_window = np.concatenate([
|
762 |
+
extended_mean_pred[-(window_size - n_random_real):],
|
763 |
+
random_real
|
764 |
+
])
|
765 |
+
volume_scaler = MinMaxScaler(feature_range=(-1, 1))
|
766 |
+
normalized_context = volume_scaler.fit_transform(context_window.reshape(-1, 1)).flatten()
|
767 |
+
context = torch.tensor(normalized_context, dtype=dtype, device=device)
|
768 |
+
if len(context.shape) == 1:
|
769 |
+
context = context.unsqueeze(0)
|
770 |
+
next_length = min(window_size, remaining_steps)
|
771 |
+
with torch.amp.autocast('cuda'):
|
772 |
+
next_quantiles, next_mean = pipe.predict_quantiles(
|
773 |
+
context=context,
|
774 |
+
prediction_length=next_length,
|
775 |
+
quantile_levels=[0.1, 0.5, 0.9]
|
776 |
+
)
|
777 |
+
next_mean = next_mean.detach().cpu().numpy()
|
778 |
+
next_quantiles = next_quantiles.detach().cpu().numpy()
|
779 |
+
next_mean_pred = volume_scaler.inverse_transform(next_mean.reshape(-1, 1)).flatten()
|
780 |
+
next_lower = volume_scaler.inverse_transform(next_quantiles[0, :, 0].reshape(-1, 1)).flatten()
|
781 |
+
next_upper = volume_scaler.inverse_transform(next_quantiles[0, :, 2].reshape(-1, 1)).flatten()
|
782 |
+
next_std_pred = (next_upper - next_lower) / (2 * 1.645)
|
783 |
+
if abs(next_mean_pred[0] - extended_mean_pred[-1]) > max(1e-6, 0.05 * abs(extended_mean_pred[-1])):
|
784 |
+
print(f"Warning: Discontinuity detected between last volume prediction ({extended_mean_pred[-1]}) and next prediction ({next_mean_pred[0]})")
|
785 |
+
extended_mean_pred = np.concatenate([extended_mean_pred, next_mean_pred])
|
786 |
+
extended_std_pred = np.concatenate([extended_std_pred, next_std_pred])
|
787 |
+
remaining_steps -= len(next_mean_pred)
|
788 |
+
if remaining_steps <= 0:
|
789 |
+
break
|
790 |
+
volume_pred = extended_mean_pred[:trim_length]
|
791 |
+
else:
|
792 |
+
avg_volume = df['Volume'].mean()
|
793 |
+
volume_pred = np.full(trim_length, avg_volume)
|
794 |
except Exception as e:
|
795 |
print(f"Volume prediction error: {str(e)}")
|
796 |
# Fallback: use historical average
|
797 |
avg_volume = df['Volume'].mean()
|
798 |
+
volume_pred = np.full(trim_length, avg_volume)
|
|
|
799 |
try:
|
800 |
# Prepare RSI data for Chronos
|
801 |
rsi_data = df['RSI'].values
|
802 |
if len(rsi_data) >= 64 and not np.any(np.isnan(rsi_data)):
|
803 |
# RSI is already normalized (0-100), but we'll scale it to (-1, 1)
|
804 |
+
window_size = 64
|
805 |
+
context_window = rsi_data[-window_size:]
|
806 |
rsi_scaler = MinMaxScaler(feature_range=(-1, 1))
|
807 |
+
normalized_rsi = rsi_scaler.fit_transform(context_window.reshape(-1, 1)).flatten()
|
808 |
+
if len(normalized_rsi) < window_size:
|
809 |
+
padding = np.full(window_size - len(normalized_rsi), normalized_rsi[-1])
|
810 |
+
normalized_rsi = np.concatenate([padding, normalized_rsi])
|
811 |
+
elif len(normalized_rsi) > window_size:
|
812 |
+
normalized_rsi = normalized_rsi[-window_size:]
|
813 |
+
rsi_context = torch.tensor(normalized_rsi, dtype=dtype, device=device)
|
814 |
+
if len(rsi_context.shape) == 1:
|
815 |
+
rsi_context = rsi_context.unsqueeze(0)
|
816 |
with torch.amp.autocast('cuda'):
|
817 |
rsi_quantiles, rsi_mean = pipe.predict_quantiles(
|
818 |
+
context=rsi_context,
|
819 |
+
prediction_length=actual_prediction_length,
|
820 |
quantile_levels=[0.1, 0.5, 0.9]
|
821 |
)
|
|
|
822 |
# Convert and denormalize RSI predictions
|
823 |
+
rsi_quantiles = rsi_quantiles.detach().cpu().numpy()
|
824 |
rsi_mean = rsi_mean.detach().cpu().numpy()
|
825 |
rsi_pred = rsi_scaler.inverse_transform(rsi_mean.reshape(-1, 1)).flatten()
|
|
|
826 |
# Clamp RSI to valid range (0-100)
|
827 |
+
lower_bound = rsi_scaler.inverse_transform(rsi_quantiles[0, :, 0].reshape(-1, 1)).flatten()
|
828 |
+
upper_bound = rsi_scaler.inverse_transform(rsi_quantiles[0, :, 2].reshape(-1, 1)).flatten()
|
829 |
+
std_pred_rsi = (upper_bound - lower_bound) / (2 * 1.645)
|
830 |
rsi_pred = np.clip(rsi_pred, 0, 100)
|
831 |
+
last_actual = rsi_data[-1]
|
832 |
+
first_pred = rsi_pred[0]
|
833 |
+
if abs(first_pred - last_actual) > max(1e-6, 0.05 * abs(last_actual)):
|
834 |
+
print(f"Warning: Discontinuity detected between last actual RSI ({last_actual}) and first prediction ({first_pred})")
|
835 |
# Extend RSI predictions if needed
|
836 |
+
if actual_prediction_length < trim_length:
|
837 |
+
extended_mean_pred = rsi_pred.copy()
|
838 |
+
extended_std_pred = std_pred_rsi.copy()
|
839 |
+
remaining_steps = trim_length - actual_prediction_length
|
840 |
+
steps_needed = (remaining_steps + actual_prediction_length - 1) // actual_prediction_length
|
841 |
+
for step in range(steps_needed):
|
842 |
+
n_actual = max(0, window_size - len(extended_mean_pred))
|
843 |
+
n_pred = window_size - n_actual
|
844 |
+
if n_actual > 0:
|
845 |
+
context_window = np.concatenate([
|
846 |
+
rsi_data[-n_actual:],
|
847 |
+
extended_mean_pred[-n_pred:] if n_pred > 0 else np.array([])
|
848 |
+
])
|
849 |
+
else:
|
850 |
+
# All synthetic, but add a few random real points
|
851 |
+
n_random_real = min(random_real_points, len(rsi_data))
|
852 |
+
random_real = np.random.choice(rsi_data, size=n_random_real, replace=False)
|
853 |
+
context_window = np.concatenate([
|
854 |
+
extended_mean_pred[-(window_size - n_random_real):],
|
855 |
+
random_real
|
856 |
+
])
|
857 |
+
rsi_scaler = MinMaxScaler(feature_range=(-1, 1))
|
858 |
+
normalized_context = rsi_scaler.fit_transform(context_window.reshape(-1, 1)).flatten()
|
859 |
+
context = torch.tensor(normalized_context, dtype=dtype, device=device)
|
860 |
+
if len(context.shape) == 1:
|
861 |
+
context = context.unsqueeze(0)
|
862 |
+
next_length = min(window_size, remaining_steps)
|
863 |
+
with torch.amp.autocast('cuda'):
|
864 |
+
next_quantiles, next_mean = pipe.predict_quantiles(
|
865 |
+
context=context,
|
866 |
+
prediction_length=next_length,
|
867 |
+
quantile_levels=[0.1, 0.5, 0.9]
|
868 |
+
)
|
869 |
+
next_mean = next_mean.detach().cpu().numpy()
|
870 |
+
next_quantiles = next_quantiles.detach().cpu().numpy()
|
871 |
+
next_mean_pred = rsi_scaler.inverse_transform(next_mean.reshape(-1, 1)).flatten()
|
872 |
+
next_lower = rsi_scaler.inverse_transform(next_quantiles[0, :, 0].reshape(-1, 1)).flatten()
|
873 |
+
next_upper = rsi_scaler.inverse_transform(next_quantiles[0, :, 2].reshape(-1, 1)).flatten()
|
874 |
+
next_std_pred = (next_upper - next_lower) / (2 * 1.645)
|
875 |
+
next_mean_pred = np.clip(next_mean_pred, 0, 100)
|
876 |
+
if abs(next_mean_pred[0] - extended_mean_pred[-1]) > max(1e-6, 0.05 * abs(extended_mean_pred[-1])):
|
877 |
+
print(f"Warning: Discontinuity detected between last RSI prediction ({extended_mean_pred[-1]}) and next prediction ({next_mean_pred[0]})")
|
878 |
+
extended_mean_pred = np.concatenate([extended_mean_pred, next_mean_pred])
|
879 |
+
extended_std_pred = np.concatenate([extended_std_pred, next_std_pred])
|
880 |
+
remaining_steps -= len(next_mean_pred)
|
881 |
+
if remaining_steps <= 0:
|
882 |
+
break
|
883 |
+
rsi_pred = extended_mean_pred[:trim_length]
|
884 |
+
else:
|
885 |
+
last_rsi = df['RSI'].iloc[-1]
|
886 |
+
rsi_pred = np.full(trim_length, last_rsi)
|
887 |
except Exception as e:
|
888 |
print(f"RSI prediction error: {str(e)}")
|
889 |
# Fallback: use last known RSI value
|
890 |
last_rsi = df['RSI'].iloc[-1]
|
891 |
+
rsi_pred = np.full(trim_length, last_rsi)
|
|
|
892 |
try:
|
893 |
# Prepare MACD data for Chronos
|
894 |
macd_data = df['MACD'].values
|
895 |
if len(macd_data) >= 64 and not np.any(np.isnan(macd_data)):
|
896 |
# Normalize MACD data
|
897 |
+
window_size = 64
|
898 |
+
context_window = macd_data[-window_size:]
|
899 |
macd_scaler = MinMaxScaler(feature_range=(-1, 1))
|
900 |
+
normalized_macd = macd_scaler.fit_transform(context_window.reshape(-1, 1)).flatten()
|
901 |
+
if len(normalized_macd) < window_size:
|
902 |
+
padding = np.full(window_size - len(normalized_macd), normalized_macd[-1])
|
903 |
+
normalized_macd = np.concatenate([padding, normalized_macd])
|
904 |
+
elif len(normalized_macd) > window_size:
|
905 |
+
normalized_macd = normalized_macd[-window_size:]
|
906 |
+
macd_context = torch.tensor(normalized_macd, dtype=dtype, device=device)
|
907 |
+
if len(macd_context.shape) == 1:
|
908 |
+
macd_context = macd_context.unsqueeze(0)
|
909 |
with torch.amp.autocast('cuda'):
|
910 |
macd_quantiles, macd_mean = pipe.predict_quantiles(
|
911 |
+
context=macd_context,
|
912 |
+
prediction_length=actual_prediction_length,
|
913 |
quantile_levels=[0.1, 0.5, 0.9]
|
914 |
)
|
|
|
915 |
# Convert and denormalize MACD predictions
|
916 |
+
macd_quantiles = macd_quantiles.detach().cpu().numpy()
|
917 |
macd_mean = macd_mean.detach().cpu().numpy()
|
918 |
macd_pred = macd_scaler.inverse_transform(macd_mean.reshape(-1, 1)).flatten()
|
919 |
+
lower_bound = macd_scaler.inverse_transform(macd_quantiles[0, :, 0].reshape(-1, 1)).flatten()
|
920 |
+
upper_bound = macd_scaler.inverse_transform(macd_quantiles[0, :, 2].reshape(-1, 1)).flatten()
|
921 |
+
std_pred_macd = (upper_bound - lower_bound) / (2 * 1.645)
|
922 |
+
last_actual = macd_data[-1]
|
923 |
+
first_pred = macd_pred[0]
|
924 |
+
|
925 |
# Extend MACD predictions if needed
|
926 |
+
if abs(first_pred - last_actual) > max(1e-6, 0.05 * abs(last_actual)):
|
927 |
+
print(f"Warning: Discontinuity detected between last actual MACD ({last_actual}) and first prediction ({first_pred})")
|
928 |
+
if actual_prediction_length < trim_length:
|
929 |
+
extended_mean_pred = macd_pred.copy()
|
930 |
+
extended_std_pred = std_pred_macd.copy()
|
931 |
+
remaining_steps = trim_length - actual_prediction_length
|
932 |
+
steps_needed = (remaining_steps + actual_prediction_length - 1) // actual_prediction_length
|
933 |
+
for step in range(steps_needed):
|
934 |
+
n_actual = max(0, window_size - len(extended_mean_pred))
|
935 |
+
n_pred = window_size - n_actual
|
936 |
+
if n_actual > 0:
|
937 |
+
context_window = np.concatenate([
|
938 |
+
macd_data[-n_actual:],
|
939 |
+
extended_mean_pred[-n_pred:] if n_pred > 0 else np.array([])
|
940 |
+
])
|
941 |
+
else:
|
942 |
+
# All synthetic, but add a few random real points
|
943 |
+
n_random_real = min(random_real_points, len(macd_data))
|
944 |
+
random_real = np.random.choice(macd_data, size=n_random_real, replace=False)
|
945 |
+
context_window = np.concatenate([
|
946 |
+
extended_mean_pred[-(window_size - n_random_real):],
|
947 |
+
random_real
|
948 |
+
])
|
949 |
+
macd_scaler = MinMaxScaler(feature_range=(-1, 1))
|
950 |
+
normalized_context = macd_scaler.fit_transform(context_window.reshape(-1, 1)).flatten()
|
951 |
+
context = torch.tensor(normalized_context, dtype=dtype, device=device)
|
952 |
+
if len(context.shape) == 1:
|
953 |
+
context = context.unsqueeze(0)
|
954 |
+
next_length = min(window_size, remaining_steps)
|
955 |
+
with torch.amp.autocast('cuda'):
|
956 |
+
next_quantiles, next_mean = pipe.predict_quantiles(
|
957 |
+
context=context,
|
958 |
+
prediction_length=next_length,
|
959 |
+
quantile_levels=[0.1, 0.5, 0.9]
|
960 |
+
)
|
961 |
+
next_mean = next_mean.detach().cpu().numpy()
|
962 |
+
next_quantiles = next_quantiles.detach().cpu().numpy()
|
963 |
+
next_mean_pred = macd_scaler.inverse_transform(next_mean.reshape(-1, 1)).flatten()
|
964 |
+
next_lower = macd_scaler.inverse_transform(next_quantiles[0, :, 0].reshape(-1, 1)).flatten()
|
965 |
+
next_upper = macd_scaler.inverse_transform(next_quantiles[0, :, 2].reshape(-1, 1)).flatten()
|
966 |
+
next_std_pred = (next_upper - next_lower) / (2 * 1.645)
|
967 |
+
if abs(next_mean_pred[0] - extended_mean_pred[-1]) > max(1e-6, 0.05 * abs(extended_mean_pred[-1])):
|
968 |
+
print(f"Warning: Discontinuity detected between last MACD prediction ({extended_mean_pred[-1]}) and next prediction ({next_mean_pred[0]})")
|
969 |
+
extended_mean_pred = np.concatenate([extended_mean_pred, next_mean_pred])
|
970 |
+
extended_std_pred = np.concatenate([extended_std_pred, next_std_pred])
|
971 |
+
remaining_steps -= len(next_mean_pred)
|
972 |
+
if remaining_steps <= 0:
|
973 |
+
break
|
974 |
+
macd_pred = extended_mean_pred[:trim_length]
|
975 |
+
else:
|
976 |
+
last_macd = df['MACD'].iloc[-1]
|
977 |
+
macd_pred = np.full(trim_length, last_macd)
|
978 |
except Exception as e:
|
979 |
print(f"MACD prediction error: {str(e)}")
|
980 |
# Fallback: use last known MACD value
|
981 |
last_macd = df['MACD'].iloc[-1]
|
982 |
+
macd_pred = np.full(trim_length, last_macd)
|
|
|
983 |
except Exception as e:
|
984 |
print(f"Chronos prediction error: {str(e)}")
|
985 |
print(f"Error type: {type(e)}")
|
|
|
1896 |
label="Market Index for Correlation",
|
1897 |
value="^GSPC"
|
1898 |
)
|
1899 |
+
random_real_points = gr.Slider(
|
1900 |
+
minimum=0,
|
1901 |
+
maximum=16,
|
1902 |
+
value=4,
|
1903 |
+
step=1,
|
1904 |
+
label="Random Real Points in Long-Horizon Context"
|
1905 |
+
)
|
1906 |
|
1907 |
with gr.Column():
|
1908 |
gr.Markdown("### Ensemble Weights")
|
|
|
2116 |
|
2117 |
def analyze_stock(symbol, timeframe, prediction_days, lookback_days, strategy,
|
2118 |
use_ensemble, use_regime_detection, use_stress_testing,
|
2119 |
+
risk_free_rate, market_index, chronos_weight, technical_weight, statistical_weight,
|
2120 |
+
random_real_points):
|
2121 |
try:
|
2122 |
# Create ensemble weights
|
2123 |
ensemble_weights = {
|
|
|
2141 |
use_stress_testing=use_stress_testing,
|
2142 |
risk_free_rate=risk_free_rate,
|
2143 |
ensemble_weights=ensemble_weights,
|
2144 |
+
market_index=market_index,
|
2145 |
+
random_real_points=random_real_points
|
2146 |
)
|
2147 |
|
2148 |
# Get historical data for additional metrics
|
|
|
2224 |
|
2225 |
# Daily analysis button click
|
2226 |
def daily_analysis(s: str, pd: int, ld: int, st: str, ue: bool, urd: bool, ust: bool,
|
2227 |
+
rfr: float, mi: str, cw: float, tw: float, sw: float,
|
2228 |
+
rrp: int) -> Tuple[Dict, go.Figure, Dict, Dict, Dict, Dict, Dict, Dict, Dict]:
|
2229 |
"""
|
2230 |
Process daily timeframe stock analysis with advanced features.
|
2231 |
|
|
|
2259 |
Weight given to technical analysis predictions in ensemble methods
|
2260 |
sw (float): Statistical weight in ensemble (0.0-1.0)
|
2261 |
Weight given to statistical model predictions in ensemble methods
|
2262 |
+
rrp (int): Number of random real points to include in long-horizon context
|
2263 |
|
2264 |
Returns:
|
2265 |
Tuple[Dict, go.Figure, Dict, Dict, Dict, Dict, Dict, Dict, Dict]: Analysis results containing:
|
|
|
2279 |
|
2280 |
Example:
|
2281 |
>>> signals, plot, metrics, risk, sector, regime, stress, ensemble, advanced = daily_analysis(
|
2282 |
+
... "AAPL", 30, 365, "chronos", True, True, True, 0.02, "^GSPC", 0.6, 0.2, 0.2, 4
|
2283 |
... )
|
2284 |
|
2285 |
Notes:
|
|
|
2289 |
- Ensemble weights should sum to 1.0 for optimal results
|
2290 |
- Risk-free rate is typically between 0.02-0.05 (2-5% annually)
|
2291 |
"""
|
2292 |
+
return analyze_stock(s, "1d", pd, ld, st, ue, urd, ust, rfr, mi, cw, tw, sw, rrp)
|
2293 |
|
2294 |
daily_predict_btn.click(
|
2295 |
fn=daily_analysis,
|
2296 |
inputs=[daily_symbol, daily_prediction_days, daily_lookback_days, daily_strategy,
|
2297 |
use_ensemble, use_regime_detection, use_stress_testing, risk_free_rate, market_index,
|
2298 |
+
chronos_weight, technical_weight, statistical_weight,
|
2299 |
+
random_real_points],
|
2300 |
outputs=[daily_signals, daily_plot, daily_metrics, daily_risk_metrics, daily_sector_metrics,
|
2301 |
daily_regime_metrics, daily_stress_results, daily_ensemble_metrics, daily_signals_advanced]
|
2302 |
)
|
2303 |
|
2304 |
# Hourly analysis button click
|
2305 |
def hourly_analysis(s: str, pd: int, ld: int, st: str, ue: bool, urd: bool, ust: bool,
|
2306 |
+
rfr: float, mi: str, cw: float, tw: float, sw: float,
|
2307 |
+
rrp: int) -> Tuple[Dict, go.Figure, Dict, Dict, Dict, Dict, Dict, Dict, Dict]:
|
2308 |
"""
|
2309 |
Process hourly timeframe stock analysis with advanced features.
|
2310 |
|
|
|
2338 |
Weight for technical analysis in ensemble predictions
|
2339 |
sw (float): Statistical weight in ensemble (0.0-1.0)
|
2340 |
Weight for statistical models in ensemble predictions
|
2341 |
+
rrp (int): Number of random real points to include in long-horizon context
|
2342 |
|
2343 |
Returns:
|
2344 |
Tuple[Dict, go.Figure, Dict, Dict, Dict, Dict, Dict, Dict, Dict]: Analysis results containing:
|
|
|
2358 |
|
2359 |
Example:
|
2360 |
>>> signals, plot, metrics, risk, sector, regime, stress, ensemble, advanced = hourly_analysis(
|
2361 |
+
... "AAPL", 3, 14, "chronos", True, True, True, 0.02, "^GSPC", 0.6, 0.2, 0.2, 4
|
2362 |
... )
|
2363 |
|
2364 |
Notes:
|
|
|
2369 |
- Optimized for day trading and swing trading strategies
|
2370 |
- Requires high-liquidity stocks for reliable hourly analysis
|
2371 |
"""
|
2372 |
+
return analyze_stock(s, "1h", pd, ld, st, ue, urd, ust, rfr, mi, cw, tw, sw, rrp)
|
2373 |
|
2374 |
hourly_predict_btn.click(
|
2375 |
fn=hourly_analysis,
|
2376 |
inputs=[hourly_symbol, hourly_prediction_days, hourly_lookback_days, hourly_strategy,
|
2377 |
use_ensemble, use_regime_detection, use_stress_testing, risk_free_rate, market_index,
|
2378 |
+
chronos_weight, technical_weight, statistical_weight,
|
2379 |
+
random_real_points],
|
2380 |
outputs=[hourly_signals, hourly_plot, hourly_metrics, hourly_risk_metrics, hourly_sector_metrics,
|
2381 |
hourly_regime_metrics, hourly_stress_results, hourly_ensemble_metrics, hourly_signals_advanced]
|
2382 |
)
|
2383 |
|
2384 |
# 15-minute analysis button click
|
2385 |
def min15_analysis(s: str, pd: int, ld: int, st: str, ue: bool, urd: bool, ust: bool,
|
2386 |
+
rfr: float, mi: str, cw: float, tw: float, sw: float,
|
2387 |
+
rrp: int) -> Tuple[Dict, go.Figure, Dict, Dict, Dict, Dict, Dict, Dict, Dict]:
|
2388 |
"""
|
2389 |
Process 15-minute timeframe stock analysis with advanced features.
|
2390 |
|
|
|
2418 |
Weight for technical analysis in ensemble predictions
|
2419 |
sw (float): Statistical weight in ensemble (0.0-1.0)
|
2420 |
Weight for statistical models in ensemble predictions
|
2421 |
+
rrp (int): Number of random real points to include in long-horizon context
|
2422 |
|
2423 |
Returns:
|
2424 |
Tuple[Dict, go.Figure, Dict, Dict, Dict, Dict, Dict, Dict, Dict]: Analysis results containing:
|
|
|
2438 |
|
2439 |
Example:
|
2440 |
>>> signals, plot, metrics, risk, sector, regime, stress, ensemble, advanced = min15_analysis(
|
2441 |
+
... "AAPL", 1, 3, "chronos", True, True, True, 0.02, "^GSPC", 0.6, 0.2, 0.2, 4
|
2442 |
... )
|
2443 |
|
2444 |
Notes:
|
|
|
2451 |
- Higher transaction costs and slippage considerations for 15-minute strategies
|
2452 |
- Best suited for highly liquid large-cap stocks with tight bid-ask spreads
|
2453 |
"""
|
2454 |
+
return analyze_stock(s, "15m", pd, ld, st, ue, urd, ust, rfr, mi, cw, tw, sw, rrp)
|
2455 |
|
2456 |
min15_predict_btn.click(
|
2457 |
fn=min15_analysis,
|
2458 |
inputs=[min15_symbol, min15_prediction_days, min15_lookback_days, min15_strategy,
|
2459 |
use_ensemble, use_regime_detection, use_stress_testing, risk_free_rate, market_index,
|
2460 |
+
chronos_weight, technical_weight, statistical_weight,
|
2461 |
+
random_real_points],
|
2462 |
outputs=[min15_signals, min15_plot, min15_metrics, min15_risk_metrics, min15_sector_metrics,
|
2463 |
min15_regime_metrics, min15_stress_results, min15_ensemble_metrics, min15_signals_advanced]
|
2464 |
)
|