Spaces:
Running
on
Zero
Running
on
Zero
extend the rolling window predictions to all timescales
Browse files
app.py
CHANGED
@@ -323,15 +323,22 @@ def make_prediction(symbol: str, timeframe: str = "1d", prediction_days: int = 5
|
|
323 |
|
324 |
# Adjust prediction length based on timeframe
|
325 |
if timeframe == "1d":
|
326 |
-
max_prediction_length = 64
|
|
|
327 |
elif timeframe == "1h":
|
328 |
-
max_prediction_length =
|
|
|
329 |
else: # 15m
|
330 |
-
max_prediction_length =
|
|
|
331 |
|
332 |
-
|
333 |
-
|
334 |
-
min(prediction_days
|
|
|
|
|
|
|
|
|
335 |
|
336 |
actual_prediction_length = max(1, actual_prediction_length)
|
337 |
|
@@ -543,7 +550,6 @@ def make_prediction(symbol: str, timeframe: str = "1d", prediction_days: int = 5
|
|
543 |
|
544 |
for step in range(steps_needed):
|
545 |
# Use the last window_size points as context for next prediction
|
546 |
-
window_size = min(64, len(extended_mean_pred))
|
547 |
context_window = extended_mean_pred[-window_size:]
|
548 |
|
549 |
# Normalize the context window
|
@@ -554,11 +560,19 @@ def make_prediction(symbol: str, timeframe: str = "1d", prediction_days: int = 5
|
|
554 |
if len(context.shape) == 1:
|
555 |
context = context.unsqueeze(0)
|
556 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
557 |
# Make prediction for next window
|
558 |
with torch.amp.autocast('cuda'):
|
559 |
next_quantiles, next_mean = pipe.predict_quantiles(
|
560 |
context=context,
|
561 |
-
prediction_length=
|
562 |
quantile_levels=[0.1, 0.5, 0.9]
|
563 |
)
|
564 |
|
@@ -574,18 +588,37 @@ def make_prediction(symbol: str, timeframe: str = "1d", prediction_days: int = 5
|
|
574 |
# Calculate standard deviation
|
575 |
next_std_pred = (next_upper - next_lower) / (2 * 1.645)
|
576 |
|
|
|
|
|
|
|
|
|
|
|
|
|
577 |
# Append predictions
|
578 |
extended_mean_pred = np.concatenate([extended_mean_pred, next_mean_pred])
|
579 |
extended_std_pred = np.concatenate([extended_std_pred, next_std_pred])
|
580 |
|
581 |
# Update remaining days
|
582 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
583 |
if remaining_days <= 0:
|
584 |
break
|
585 |
|
586 |
# Trim to exact prediction length if needed
|
587 |
-
|
588 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
589 |
|
590 |
except Exception as e:
|
591 |
print(f"Chronos prediction error: {str(e)}")
|
|
|
323 |
|
324 |
# Adjust prediction length based on timeframe
|
325 |
if timeframe == "1d":
|
326 |
+
max_prediction_length = 64 # Chronos maximum
|
327 |
+
window_size = 64 # Use full context window
|
328 |
elif timeframe == "1h":
|
329 |
+
max_prediction_length = 64 # Chronos maximum
|
330 |
+
window_size = 64 # Use full context window
|
331 |
else: # 15m
|
332 |
+
max_prediction_length = 64 # Chronos maximum
|
333 |
+
window_size = 64 # Use full context window
|
334 |
|
335 |
+
# Calculate actual prediction length based on timeframe
|
336 |
+
if timeframe == "1d":
|
337 |
+
actual_prediction_length = min(prediction_days, max_prediction_length)
|
338 |
+
elif timeframe == "1h":
|
339 |
+
actual_prediction_length = min(prediction_days * 24, max_prediction_length)
|
340 |
+
else: # 15m
|
341 |
+
actual_prediction_length = min(prediction_days * 96, max_prediction_length)
|
342 |
|
343 |
actual_prediction_length = max(1, actual_prediction_length)
|
344 |
|
|
|
550 |
|
551 |
for step in range(steps_needed):
|
552 |
# Use the last window_size points as context for next prediction
|
|
|
553 |
context_window = extended_mean_pred[-window_size:]
|
554 |
|
555 |
# Normalize the context window
|
|
|
560 |
if len(context.shape) == 1:
|
561 |
context = context.unsqueeze(0)
|
562 |
|
563 |
+
# Calculate next prediction length based on timeframe
|
564 |
+
if timeframe == "1d":
|
565 |
+
next_length = min(max_prediction_length, remaining_days)
|
566 |
+
elif timeframe == "1h":
|
567 |
+
next_length = min(max_prediction_length, remaining_days * 24)
|
568 |
+
else: # 15m
|
569 |
+
next_length = min(max_prediction_length, remaining_days * 96)
|
570 |
+
|
571 |
# Make prediction for next window
|
572 |
with torch.amp.autocast('cuda'):
|
573 |
next_quantiles, next_mean = pipe.predict_quantiles(
|
574 |
context=context,
|
575 |
+
prediction_length=next_length,
|
576 |
quantile_levels=[0.1, 0.5, 0.9]
|
577 |
)
|
578 |
|
|
|
588 |
# Calculate standard deviation
|
589 |
next_std_pred = (next_upper - next_lower) / (2 * 1.645)
|
590 |
|
591 |
+
# Apply exponential smoothing to reduce prediction drift
|
592 |
+
if step > 0:
|
593 |
+
alpha = 0.3 # Smoothing factor
|
594 |
+
next_mean_pred = alpha * next_mean_pred + (1 - alpha) * extended_mean_pred[-len(next_mean_pred):]
|
595 |
+
next_std_pred = alpha * next_std_pred + (1 - alpha) * extended_std_pred[-len(next_std_pred):]
|
596 |
+
|
597 |
# Append predictions
|
598 |
extended_mean_pred = np.concatenate([extended_mean_pred, next_mean_pred])
|
599 |
extended_std_pred = np.concatenate([extended_std_pred, next_std_pred])
|
600 |
|
601 |
# Update remaining days
|
602 |
+
if timeframe == "1d":
|
603 |
+
remaining_days -= len(next_mean_pred)
|
604 |
+
elif timeframe == "1h":
|
605 |
+
remaining_days -= len(next_mean_pred) / 24
|
606 |
+
else: # 15m
|
607 |
+
remaining_days -= len(next_mean_pred) / 96
|
608 |
+
|
609 |
if remaining_days <= 0:
|
610 |
break
|
611 |
|
612 |
# Trim to exact prediction length if needed
|
613 |
+
if timeframe == "1d":
|
614 |
+
mean_pred = extended_mean_pred[:prediction_days]
|
615 |
+
std_pred = extended_std_pred[:prediction_days]
|
616 |
+
elif timeframe == "1h":
|
617 |
+
mean_pred = extended_mean_pred[:prediction_days * 24]
|
618 |
+
std_pred = extended_std_pred[:prediction_days * 24]
|
619 |
+
else: # 15m
|
620 |
+
mean_pred = extended_mean_pred[:prediction_days * 96]
|
621 |
+
std_pred = extended_std_pred[:prediction_days * 96]
|
622 |
|
623 |
except Exception as e:
|
624 |
print(f"Chronos prediction error: {str(e)}")
|