Tonic commited on
Commit
bd7c6bf
·
1 Parent(s): 09db56d

adds padding, time windows based on yfinance

Browse files
Files changed (1) hide show
  1. app.py +51 -12
app.py CHANGED
@@ -57,7 +57,7 @@ def get_historical_data(symbol: str, timeframe: str = "1d", lookback_days: int =
57
  pd.DataFrame: Historical data with OHLCV and technical indicators
58
  """
59
  try:
60
- # Map timeframe to yfinance interval
61
  tf_map = {
62
  "1d": "1d",
63
  "1h": "1h",
@@ -65,6 +65,12 @@ def get_historical_data(symbol: str, timeframe: str = "1d", lookback_days: int =
65
  }
66
  interval = tf_map.get(timeframe, "1d")
67
 
 
 
 
 
 
 
68
  # Calculate date range
69
  end_date = datetime.now()
70
  start_date = end_date - timedelta(days=lookback_days)
@@ -73,6 +79,9 @@ def get_historical_data(symbol: str, timeframe: str = "1d", lookback_days: int =
73
  ticker = yf.Ticker(symbol)
74
  df = ticker.history(start=start_date, end=end_date, interval=interval)
75
 
 
 
 
76
  # Get additional info for structured products
77
  info = ticker.info
78
  df['Market_Cap'] = info.get('marketCap', None)
@@ -80,31 +89,50 @@ def get_historical_data(symbol: str, timeframe: str = "1d", lookback_days: int =
80
  df['Industry'] = info.get('industry', None)
81
  df['Dividend_Yield'] = info.get('dividendYield', None)
82
 
83
- # Calculate technical indicators
84
- df['SMA_20'] = df['Close'].rolling(window=20).mean()
85
- df['SMA_50'] = df['Close'].rolling(window=50).mean()
86
- df['SMA_200'] = df['Close'].rolling(window=200).mean()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87
  df['RSI'] = calculate_rsi(df['Close'])
88
  df['MACD'], df['MACD_Signal'] = calculate_macd(df['Close'])
89
  df['BB_Upper'], df['BB_Middle'], df['BB_Lower'] = calculate_bollinger_bands(df['Close'])
90
 
91
  # Calculate returns and volatility
92
  df['Returns'] = df['Close'].pct_change()
93
- df['Volatility'] = df['Returns'].rolling(window=20).std()
94
- df['Annualized_Vol'] = df['Volatility'] * np.sqrt(252) # Annualized volatility
95
 
96
  # Calculate drawdown metrics
97
- df['Rolling_Max'] = df['Close'].rolling(window=252, min_periods=1).max()
98
  df['Drawdown'] = (df['Close'] - df['Rolling_Max']) / df['Rolling_Max']
99
- df['Max_Drawdown'] = df['Drawdown'].rolling(window=252, min_periods=1).min()
100
 
101
  # Calculate liquidity metrics
102
- df['Avg_Daily_Volume'] = df['Volume'].rolling(window=20).mean()
103
- df['Volume_Volatility'] = df['Volume'].rolling(window=20).std()
104
 
105
  # Drop NaN values
106
  df = df.dropna()
107
 
 
 
 
108
  return df
109
 
110
  except Exception as e:
@@ -157,6 +185,14 @@ def make_prediction(symbol: str, timeframe: str = "1d", prediction_days: int = 5
157
  # Prepare data for Chronos
158
  returns = df['Returns'].values
159
  normalized_returns = (returns - returns.mean()) / returns.std()
 
 
 
 
 
 
 
 
160
  context = torch.tensor(normalized_returns.reshape(-1, 1), dtype=torch.float32)
161
 
162
  # Make prediction with GPU acceleration
@@ -176,7 +212,10 @@ def make_prediction(symbol: str, timeframe: str = "1d", prediction_days: int = 5
176
  elif timeframe == "1h":
177
  actual_prediction_length = min(prediction_days * 24, max_prediction_length)
178
  else: # 15m
179
- actual_prediction_length = min(prediction_days * 96, max_prediction_length) # 96 intervals per day
 
 
 
180
 
181
  with torch.inference_mode():
182
  prediction = pipe.predict(
 
57
  pd.DataFrame: Historical data with OHLCV and technical indicators
58
  """
59
  try:
60
+ # Map timeframe to yfinance interval and adjust lookback period
61
  tf_map = {
62
  "1d": "1d",
63
  "1h": "1h",
 
65
  }
66
  interval = tf_map.get(timeframe, "1d")
67
 
68
+ # Adjust lookback period based on timeframe
69
+ if timeframe == "1h":
70
+ lookback_days = min(lookback_days, 30) # Yahoo limits hourly data to 30 days
71
+ elif timeframe == "15m":
72
+ lookback_days = min(lookback_days, 5) # Yahoo limits 15m data to 5 days
73
+
74
  # Calculate date range
75
  end_date = datetime.now()
76
  start_date = end_date - timedelta(days=lookback_days)
 
79
  ticker = yf.Ticker(symbol)
80
  df = ticker.history(start=start_date, end=end_date, interval=interval)
81
 
82
+ if df.empty:
83
+ raise Exception(f"No data available for {symbol} in {timeframe} timeframe")
84
+
85
  # Get additional info for structured products
86
  info = ticker.info
87
  df['Market_Cap'] = info.get('marketCap', None)
 
89
  df['Industry'] = info.get('industry', None)
90
  df['Dividend_Yield'] = info.get('dividendYield', None)
91
 
92
+ # Calculate technical indicators with adjusted windows based on timeframe
93
+ if timeframe == "1d":
94
+ sma_window_20 = 20
95
+ sma_window_50 = 50
96
+ sma_window_200 = 200
97
+ vol_window = 20
98
+ elif timeframe == "1h":
99
+ sma_window_20 = 20 * 6 # 5 trading days
100
+ sma_window_50 = 50 * 6 # ~10 trading days
101
+ sma_window_200 = 200 * 6 # ~40 trading days
102
+ vol_window = 20 * 6
103
+ else: # 15m
104
+ sma_window_20 = 20 * 24 # 5 trading days
105
+ sma_window_50 = 50 * 24 # ~10 trading days
106
+ sma_window_200 = 200 * 24 # ~40 trading days
107
+ vol_window = 20 * 24
108
+
109
+ df['SMA_20'] = df['Close'].rolling(window=sma_window_20).mean()
110
+ df['SMA_50'] = df['Close'].rolling(window=sma_window_50).mean()
111
+ df['SMA_200'] = df['Close'].rolling(window=sma_window_200).mean()
112
  df['RSI'] = calculate_rsi(df['Close'])
113
  df['MACD'], df['MACD_Signal'] = calculate_macd(df['Close'])
114
  df['BB_Upper'], df['BB_Middle'], df['BB_Lower'] = calculate_bollinger_bands(df['Close'])
115
 
116
  # Calculate returns and volatility
117
  df['Returns'] = df['Close'].pct_change()
118
+ df['Volatility'] = df['Returns'].rolling(window=vol_window).std()
119
+ df['Annualized_Vol'] = df['Volatility'] * np.sqrt(252)
120
 
121
  # Calculate drawdown metrics
122
+ df['Rolling_Max'] = df['Close'].rolling(window=len(df), min_periods=1).max()
123
  df['Drawdown'] = (df['Close'] - df['Rolling_Max']) / df['Rolling_Max']
124
+ df['Max_Drawdown'] = df['Drawdown'].rolling(window=len(df), min_periods=1).min()
125
 
126
  # Calculate liquidity metrics
127
+ df['Avg_Daily_Volume'] = df['Volume'].rolling(window=vol_window).mean()
128
+ df['Volume_Volatility'] = df['Volume'].rolling(window=vol_window).std()
129
 
130
  # Drop NaN values
131
  df = df.dropna()
132
 
133
+ if len(df) < 2:
134
+ raise Exception(f"Insufficient data points for {symbol} in {timeframe} timeframe")
135
+
136
  return df
137
 
138
  except Exception as e:
 
185
  # Prepare data for Chronos
186
  returns = df['Returns'].values
187
  normalized_returns = (returns - returns.mean()) / returns.std()
188
+
189
+ # Ensure we have enough data points
190
+ min_data_points = 64 # Minimum required by Chronos
191
+ if len(normalized_returns) < min_data_points:
192
+ # Pad the data with the last value
193
+ padding = np.full(min_data_points - len(normalized_returns), normalized_returns[-1])
194
+ normalized_returns = np.concatenate([padding, normalized_returns])
195
+
196
  context = torch.tensor(normalized_returns.reshape(-1, 1), dtype=torch.float32)
197
 
198
  # Make prediction with GPU acceleration
 
212
  elif timeframe == "1h":
213
  actual_prediction_length = min(prediction_days * 24, max_prediction_length)
214
  else: # 15m
215
+ actual_prediction_length = min(prediction_days * 96, max_prediction_length)
216
+
217
+ # Ensure prediction length is at least 1
218
+ actual_prediction_length = max(1, actual_prediction_length)
219
 
220
  with torch.inference_mode():
221
  prediction = pipe.predict(