Spaces:
Running
on
Zero
Running
on
Zero
move all model and components to cuda
Browse files
app.py
CHANGED
@@ -310,8 +310,25 @@ def make_prediction(symbol: str, timeframe: str = "1d", prediction_days: int = 5
|
|
310 |
|
311 |
# Load pipeline and move to GPU
|
312 |
pipe = load_pipeline()
|
|
|
|
|
313 |
pipe.model = pipe.model.cuda()
|
314 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
315 |
# Get the model's device and dtype
|
316 |
device = next(pipe.model.parameters()).device
|
317 |
dtype = next(pipe.model.parameters()).dtype
|
@@ -350,14 +367,8 @@ def make_prediction(symbol: str, timeframe: str = "1d", prediction_days: int = 5
|
|
350 |
print(f"Model device: {next(pipe.model.parameters()).device}")
|
351 |
print(f"Model dtype: {next(pipe.model.parameters()).dtype}")
|
352 |
|
353 |
-
# Move model to evaluation mode
|
354 |
pipe.model.eval()
|
355 |
-
pipe.model = pipe.model.to(device)
|
356 |
-
|
357 |
-
# Ensure all model components are on the same device
|
358 |
-
for module in pipe.model.modules():
|
359 |
-
if hasattr(module, 'to'):
|
360 |
-
module.to(device)
|
361 |
|
362 |
# Use predict_quantiles with proper formatting
|
363 |
quantiles, mean = pipe.predict_quantiles(
|
|
|
310 |
|
311 |
# Load pipeline and move to GPU
|
312 |
pipe = load_pipeline()
|
313 |
+
|
314 |
+
# Move entire model and its components to CUDA
|
315 |
pipe.model = pipe.model.cuda()
|
316 |
|
317 |
+
# Move all model parameters and buffers to CUDA
|
318 |
+
for param in pipe.model.parameters():
|
319 |
+
param.data = param.data.cuda()
|
320 |
+
for buffer in pipe.model.buffers():
|
321 |
+
buffer.data = buffer.data.cuda()
|
322 |
+
|
323 |
+
# Move all submodules to CUDA
|
324 |
+
for module in pipe.model.modules():
|
325 |
+
module.to('cuda')
|
326 |
+
# Move any internal states or buffers
|
327 |
+
if hasattr(module, '_buffers'):
|
328 |
+
for buffer in module._buffers.values():
|
329 |
+
if buffer is not None:
|
330 |
+
buffer.data = buffer.data.cuda()
|
331 |
+
|
332 |
# Get the model's device and dtype
|
333 |
device = next(pipe.model.parameters()).device
|
334 |
dtype = next(pipe.model.parameters()).dtype
|
|
|
367 |
print(f"Model device: {next(pipe.model.parameters()).device}")
|
368 |
print(f"Model dtype: {next(pipe.model.parameters()).dtype}")
|
369 |
|
370 |
+
# Move model to evaluation mode
|
371 |
pipe.model.eval()
|
|
|
|
|
|
|
|
|
|
|
|
|
372 |
|
373 |
# Use predict_quantiles with proper formatting
|
374 |
quantiles, mean = pipe.predict_quantiles(
|