Spaces:
Running
on
Zero
Running
on
Zero
move all model and components to cuda
Browse files
app.py
CHANGED
@@ -352,26 +352,11 @@ def make_prediction(symbol: str, timeframe: str = "1d", prediction_days: int = 5
|
|
352 |
# Move model to evaluation mode
|
353 |
pipe.model.eval()
|
354 |
|
355 |
-
# Move the
|
356 |
-
|
357 |
-
pipe.model.encoder = pipe.model.encoder.to(device)
|
358 |
-
if hasattr(pipe.model, 'decoder'):
|
359 |
-
pipe.model.decoder = pipe.model.decoder.to(device)
|
360 |
-
if hasattr(pipe.model, 'embed_tokens'):
|
361 |
-
pipe.model.embed_tokens = pipe.model.embed_tokens.to(device)
|
362 |
-
if hasattr(pipe.model, 'final_layer_norm'):
|
363 |
-
pipe.model.final_layer_norm = pipe.model.final_layer_norm.to(device)
|
364 |
-
|
365 |
-
# Move all parameters and buffers except distribution head
|
366 |
-
for name, param in pipe.model.named_parameters():
|
367 |
-
if 'distribution_head' not in name:
|
368 |
-
param.data = param.data.to(device)
|
369 |
-
for name, buffer in pipe.model.named_buffers():
|
370 |
-
if 'distribution_head' not in name:
|
371 |
-
buffer.data = buffer.data.to(device)
|
372 |
|
373 |
# Use predict_quantiles with proper formatting
|
374 |
-
with torch.
|
375 |
quantiles, mean = pipe.predict_quantiles(
|
376 |
context=context,
|
377 |
prediction_length=actual_prediction_length,
|
|
|
352 |
# Move model to evaluation mode
|
353 |
pipe.model.eval()
|
354 |
|
355 |
+
# Move the entire model to GPU
|
356 |
+
pipe.model = pipe.model.to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
357 |
|
358 |
# Use predict_quantiles with proper formatting
|
359 |
+
with torch.amp.autocast('cuda'):
|
360 |
quantiles, mean = pipe.predict_quantiles(
|
361 |
context=context,
|
362 |
prediction_length=actual_prediction_length,
|