Spaces:
Running
on
Zero
Running
on
Zero
improve extended window, smoothing and context management
Browse files
app.py
CHANGED
@@ -371,7 +371,9 @@ def make_prediction(symbol: str, timeframe: str = "1d", prediction_days: int = 5
|
|
371 |
use_ensemble: bool = True, use_regime_detection: bool = True, use_stress_testing: bool = True,
|
372 |
risk_free_rate: float = 0.02, ensemble_weights: Dict = None,
|
373 |
market_index: str = "^GSPC",
|
374 |
-
random_real_points: int = 4, use_smoothing: bool = True
|
|
|
|
|
375 |
"""
|
376 |
Make prediction using selected strategy with advanced features.
|
377 |
|
@@ -388,6 +390,7 @@ def make_prediction(symbol: str, timeframe: str = "1d", prediction_days: int = 5
|
|
388 |
market_index (str): Market index for correlation analysis
|
389 |
random_real_points (int): Number of random real points to include in long-horizon context
|
390 |
use_smoothing (bool): Whether to apply smoothing to predictions
|
|
|
391 |
|
392 |
Returns:
|
393 |
Tuple[Dict, go.Figure]: Trading signals and visualization plot
|
@@ -400,17 +403,22 @@ def make_prediction(symbol: str, timeframe: str = "1d", prediction_days: int = 5
|
|
400 |
try:
|
401 |
# Prepare data for Chronos
|
402 |
prices = df['Close'].values
|
403 |
-
|
|
|
|
|
404 |
# Use a larger range for scaler fitting to get better normalization
|
405 |
-
scaler_range = min(
|
406 |
-
|
|
|
|
|
|
|
407 |
scaler = MinMaxScaler(feature_range=(-1, 1))
|
408 |
# Fit scaler on a larger range for better normalization
|
409 |
scaler.fit(prices[-scaler_range:].reshape(-1, 1))
|
410 |
normalized_prices = scaler.transform(context_window.reshape(-1, 1)).flatten()
|
411 |
|
412 |
-
# Ensure we have enough data points
|
413 |
-
min_data_points =
|
414 |
if len(normalized_prices) < min_data_points:
|
415 |
padding = np.full(min_data_points - len(normalized_prices), normalized_prices[-1])
|
416 |
normalized_prices = np.concatenate([padding, normalized_prices])
|
@@ -431,15 +439,15 @@ def make_prediction(symbol: str, timeframe: str = "1d", prediction_days: int = 5
|
|
431 |
|
432 |
# Adjust prediction length based on timeframe
|
433 |
if timeframe == "1d":
|
434 |
-
max_prediction_length =
|
435 |
actual_prediction_length = min(prediction_days, max_prediction_length)
|
436 |
trim_length = prediction_days
|
437 |
elif timeframe == "1h":
|
438 |
-
max_prediction_length =
|
439 |
actual_prediction_length = min(prediction_days * 24, max_prediction_length)
|
440 |
trim_length = prediction_days * 24
|
441 |
else: # 15m
|
442 |
-
max_prediction_length =
|
443 |
actual_prediction_length = min(prediction_days * 96, max_prediction_length)
|
444 |
trim_length = prediction_days * 96
|
445 |
actual_prediction_length = max(1, actual_prediction_length)
|
@@ -654,35 +662,38 @@ def make_prediction(symbol: str, timeframe: str = "1d", prediction_days: int = 5
|
|
654 |
# Apply the same trend but starting from the last actual value
|
655 |
for i in range(1, len(mean_pred)):
|
656 |
mean_pred[i] = last_actual + original_trend * i
|
657 |
-
|
658 |
-
|
659 |
-
|
660 |
-
|
661 |
|
662 |
# If we had to limit the prediction length, extend the prediction recursively
|
663 |
if actual_prediction_length < trim_length:
|
664 |
extended_mean_pred = mean_pred.copy()
|
665 |
extended_std_pred = std_pred.copy()
|
666 |
|
|
|
|
|
|
|
667 |
# Calculate the number of extension steps needed
|
668 |
remaining_steps = trim_length - actual_prediction_length
|
669 |
steps_needed = (remaining_steps + actual_prediction_length - 1) // actual_prediction_length
|
|
|
670 |
for step in range(steps_needed):
|
671 |
-
|
672 |
-
#
|
673 |
all_available_data = np.concatenate([prices, extended_mean_pred])
|
674 |
|
675 |
-
# If we have more data than
|
676 |
# Otherwise, use all available data (this allows for longer context when available)
|
677 |
-
if len(all_available_data) >
|
678 |
-
context_window = all_available_data[-
|
679 |
else:
|
680 |
context_window = all_available_data
|
681 |
|
682 |
-
scaler
|
683 |
-
|
684 |
-
|
685 |
-
normalized_context = scaler.fit_transform(context_window.reshape(-1, 1)).flatten()
|
686 |
context = torch.tensor(normalized_context, dtype=dtype, device=device)
|
687 |
if len(context.shape) == 1:
|
688 |
context = context.unsqueeze(0)
|
@@ -694,6 +705,7 @@ def make_prediction(symbol: str, timeframe: str = "1d", prediction_days: int = 5
|
|
694 |
next_length = min(max_prediction_length, remaining_steps)
|
695 |
else:
|
696 |
next_length = min(max_prediction_length, remaining_steps)
|
|
|
697 |
with torch.amp.autocast('cuda'):
|
698 |
next_quantiles, next_mean = pipe.predict_quantiles(
|
699 |
context=context,
|
@@ -701,20 +713,33 @@ def make_prediction(symbol: str, timeframe: str = "1d", prediction_days: int = 5
|
|
701 |
quantile_levels=[0.1, 0.5, 0.9]
|
702 |
)
|
703 |
|
704 |
-
# Convert predictions to numpy and denormalize
|
705 |
next_mean = next_mean.detach().cpu().numpy()
|
706 |
next_quantiles = next_quantiles.detach().cpu().numpy()
|
707 |
|
708 |
-
# Denormalize predictions
|
709 |
-
next_mean_pred =
|
710 |
-
next_lower =
|
711 |
-
next_upper =
|
712 |
|
713 |
# Calculate standard deviation
|
714 |
next_std_pred = (next_upper - next_lower) / (2 * 1.645)
|
|
|
|
|
715 |
if abs(next_mean_pred[0] - extended_mean_pred[-1]) > max(1e-6, 0.05 * abs(extended_mean_pred[-1])):
|
716 |
print(f"Warning: Discontinuity detected between last prediction ({extended_mean_pred[-1]}) and next prediction ({next_mean_pred[0]})")
|
717 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
718 |
# Append predictions
|
719 |
extended_mean_pred = np.concatenate([extended_mean_pred, next_mean_pred])
|
720 |
extended_std_pred = np.concatenate([extended_std_pred, next_std_pred])
|
@@ -734,20 +759,19 @@ def make_prediction(symbol: str, timeframe: str = "1d", prediction_days: int = 5
|
|
734 |
try:
|
735 |
# Prepare volume data for Chronos
|
736 |
volume_data = df['Volume'].values
|
737 |
-
if len(volume_data) >=
|
738 |
# Normalize volume data
|
739 |
-
|
740 |
-
|
741 |
-
context_window = volume_data[-window_size:]
|
742 |
volume_scaler = MinMaxScaler(feature_range=(-1, 1))
|
743 |
# Fit scaler on a larger range for better normalization
|
744 |
volume_scaler.fit(volume_data[-scaler_range:].reshape(-1, 1))
|
745 |
normalized_volume = volume_scaler.transform(context_window.reshape(-1, 1)).flatten()
|
746 |
-
if len(normalized_volume) <
|
747 |
-
padding = np.full(
|
748 |
normalized_volume = np.concatenate([padding, normalized_volume])
|
749 |
-
elif len(normalized_volume) >
|
750 |
-
normalized_volume = normalized_volume[-
|
751 |
volume_context = torch.tensor(normalized_volume, dtype=dtype, device=device)
|
752 |
if len(volume_context.shape) == 1:
|
753 |
volume_context = volume_context.unsqueeze(0)
|
@@ -765,7 +789,7 @@ def make_prediction(symbol: str, timeframe: str = "1d", prediction_days: int = 5
|
|
765 |
std_pred_vol = (upper_bound - lower_bound) / (2 * 1.645)
|
766 |
last_actual = volume_data[-1]
|
767 |
first_pred = volume_pred[0]
|
768 |
-
if abs(first_pred - last_actual) > max(1e-6, 0.005 * abs(last_actual)):
|
769 |
print(f"Warning: Discontinuity detected between last actual volume ({last_actual}) and first prediction ({first_pred})")
|
770 |
# Apply continuity correction
|
771 |
volume_pred[0] = last_actual
|
@@ -776,33 +800,38 @@ def make_prediction(symbol: str, timeframe: str = "1d", prediction_days: int = 5
|
|
776 |
# Apply the same trend but starting from the last actual value
|
777 |
for i in range(1, len(volume_pred)):
|
778 |
volume_pred[i] = last_actual + original_trend * i
|
779 |
-
|
780 |
-
|
781 |
-
|
782 |
-
|
|
|
783 |
# Extend volume predictions if needed
|
784 |
if actual_prediction_length < trim_length:
|
785 |
-
|
786 |
-
|
787 |
remaining_steps = trim_length - actual_prediction_length
|
788 |
steps_needed = (remaining_steps + actual_prediction_length - 1) // actual_prediction_length
|
|
|
789 |
for step in range(steps_needed):
|
790 |
-
# Use all available datapoints for context,
|
791 |
-
|
|
|
792 |
|
793 |
-
# If we have more data than
|
794 |
# Otherwise, use all available data (this allows for longer context when available)
|
795 |
-
if len(all_available_data) >
|
796 |
-
context_window = all_available_data[-
|
797 |
else:
|
798 |
context_window = all_available_data
|
799 |
|
800 |
-
|
801 |
-
|
|
|
802 |
context = torch.tensor(normalized_context, dtype=dtype, device=device)
|
803 |
if len(context.shape) == 1:
|
804 |
context = context.unsqueeze(0)
|
805 |
-
|
|
|
806 |
with torch.amp.autocast('cuda'):
|
807 |
next_quantiles, next_mean = pipe.predict_quantiles(
|
808 |
context=context,
|
@@ -815,14 +844,26 @@ def make_prediction(symbol: str, timeframe: str = "1d", prediction_days: int = 5
|
|
815 |
next_lower = volume_scaler.inverse_transform(next_quantiles[0, :, 0].reshape(-1, 1)).flatten()
|
816 |
next_upper = volume_scaler.inverse_transform(next_quantiles[0, :, 2].reshape(-1, 1)).flatten()
|
817 |
next_std_pred = (next_upper - next_lower) / (2 * 1.645)
|
818 |
-
|
819 |
-
|
820 |
-
|
821 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
822 |
remaining_steps -= len(next_mean_pred)
|
823 |
if remaining_steps <= 0:
|
824 |
break
|
825 |
-
volume_pred =
|
826 |
else:
|
827 |
avg_volume = df['Volume'].mean()
|
828 |
volume_pred = np.full(trim_length, avg_volume)
|
@@ -831,23 +872,23 @@ def make_prediction(symbol: str, timeframe: str = "1d", prediction_days: int = 5
|
|
831 |
# Fallback: use historical average
|
832 |
avg_volume = df['Volume'].mean()
|
833 |
volume_pred = np.full(trim_length, avg_volume)
|
|
|
834 |
try:
|
835 |
# Prepare RSI data for Chronos
|
836 |
rsi_data = df['RSI'].values
|
837 |
-
if len(rsi_data) >=
|
838 |
# RSI is already normalized (0-100), but we'll scale it to (-1, 1)
|
839 |
-
|
840 |
-
|
841 |
-
context_window = rsi_data[-window_size:]
|
842 |
rsi_scaler = MinMaxScaler(feature_range=(-1, 1))
|
843 |
# Fit scaler on a larger range for better normalization
|
844 |
rsi_scaler.fit(rsi_data[-scaler_range:].reshape(-1, 1))
|
845 |
normalized_rsi = rsi_scaler.transform(context_window.reshape(-1, 1)).flatten()
|
846 |
-
if len(normalized_rsi) <
|
847 |
-
padding = np.full(
|
848 |
normalized_rsi = np.concatenate([padding, normalized_rsi])
|
849 |
-
elif len(normalized_rsi) >
|
850 |
-
normalized_rsi = normalized_rsi[-
|
851 |
rsi_context = torch.tensor(normalized_rsi, dtype=dtype, device=device)
|
852 |
if len(rsi_context.shape) == 1:
|
853 |
rsi_context = rsi_context.unsqueeze(0)
|
@@ -868,7 +909,7 @@ def make_prediction(symbol: str, timeframe: str = "1d", prediction_days: int = 5
|
|
868 |
rsi_pred = np.clip(rsi_pred, 0, 100)
|
869 |
last_actual = rsi_data[-1]
|
870 |
first_pred = rsi_pred[0]
|
871 |
-
if abs(first_pred - last_actual) > max(1e-6, 0.005 * abs(last_actual)):
|
872 |
print(f"Warning: Discontinuity detected between last actual RSI ({last_actual}) and first prediction ({first_pred})")
|
873 |
# Apply continuity correction
|
874 |
rsi_pred[0] = last_actual
|
@@ -876,29 +917,34 @@ def make_prediction(symbol: str, timeframe: str = "1d", prediction_days: int = 5
|
|
876 |
trend = rsi_pred[1] - first_pred
|
877 |
rsi_pred[1:] = rsi_pred[1:] - first_pred + last_actual
|
878 |
rsi_pred = np.clip(rsi_pred, 0, 100) # Re-clip after adjustment
|
|
|
879 |
# Extend RSI predictions if needed
|
880 |
if actual_prediction_length < trim_length:
|
881 |
-
|
882 |
-
|
883 |
remaining_steps = trim_length - actual_prediction_length
|
884 |
steps_needed = (remaining_steps + actual_prediction_length - 1) // actual_prediction_length
|
|
|
885 |
for step in range(steps_needed):
|
886 |
-
# Use all available datapoints for context,
|
887 |
-
|
|
|
888 |
|
889 |
-
# If we have more data than
|
890 |
# Otherwise, use all available data (this allows for longer context when available)
|
891 |
-
if len(all_available_data) >
|
892 |
-
context_window = all_available_data[-
|
893 |
else:
|
894 |
context_window = all_available_data
|
895 |
|
896 |
-
|
897 |
-
|
|
|
898 |
context = torch.tensor(normalized_context, dtype=dtype, device=device)
|
899 |
if len(context.shape) == 1:
|
900 |
context = context.unsqueeze(0)
|
901 |
-
|
|
|
902 |
with torch.amp.autocast('cuda'):
|
903 |
next_quantiles, next_mean = pipe.predict_quantiles(
|
904 |
context=context,
|
@@ -912,14 +958,28 @@ def make_prediction(symbol: str, timeframe: str = "1d", prediction_days: int = 5
|
|
912 |
next_upper = rsi_scaler.inverse_transform(next_quantiles[0, :, 2].reshape(-1, 1)).flatten()
|
913 |
next_std_pred = (next_upper - next_lower) / (2 * 1.645)
|
914 |
next_mean_pred = np.clip(next_mean_pred, 0, 100)
|
915 |
-
|
916 |
-
|
917 |
-
|
918 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
919 |
remaining_steps -= len(next_mean_pred)
|
920 |
if remaining_steps <= 0:
|
921 |
break
|
922 |
-
rsi_pred =
|
923 |
else:
|
924 |
last_rsi = df['RSI'].iloc[-1]
|
925 |
rsi_pred = np.full(trim_length, last_rsi)
|
@@ -928,23 +988,23 @@ def make_prediction(symbol: str, timeframe: str = "1d", prediction_days: int = 5
|
|
928 |
# Fallback: use last known RSI value
|
929 |
last_rsi = df['RSI'].iloc[-1]
|
930 |
rsi_pred = np.full(trim_length, last_rsi)
|
|
|
931 |
try:
|
932 |
# Prepare MACD data for Chronos
|
933 |
macd_data = df['MACD'].values
|
934 |
-
if len(macd_data) >=
|
935 |
# Normalize MACD data
|
936 |
-
|
937 |
-
|
938 |
-
context_window = macd_data[-window_size:]
|
939 |
macd_scaler = MinMaxScaler(feature_range=(-1, 1))
|
940 |
# Fit scaler on a larger range for better normalization
|
941 |
macd_scaler.fit(macd_data[-scaler_range:].reshape(-1, 1))
|
942 |
normalized_macd = macd_scaler.transform(context_window.reshape(-1, 1)).flatten()
|
943 |
-
if len(normalized_macd) <
|
944 |
-
padding = np.full(
|
945 |
normalized_macd = np.concatenate([padding, normalized_macd])
|
946 |
-
elif len(normalized_macd) >
|
947 |
-
normalized_macd = normalized_macd[-
|
948 |
macd_context = torch.tensor(normalized_macd, dtype=dtype, device=device)
|
949 |
if len(macd_context.shape) == 1:
|
950 |
macd_context = macd_context.unsqueeze(0)
|
@@ -964,8 +1024,8 @@ def make_prediction(symbol: str, timeframe: str = "1d", prediction_days: int = 5
|
|
964 |
last_actual = macd_data[-1]
|
965 |
first_pred = macd_pred[0]
|
966 |
|
967 |
-
#
|
968 |
-
if abs(first_pred - last_actual) > max(1e-6, 0.005 * abs(last_actual)):
|
969 |
print(f"Warning: Discontinuity detected between last actual MACD ({last_actual}) and first prediction ({first_pred})")
|
970 |
# Apply continuity correction
|
971 |
macd_pred[0] = last_actual
|
@@ -976,32 +1036,38 @@ def make_prediction(symbol: str, timeframe: str = "1d", prediction_days: int = 5
|
|
976 |
# Apply the same trend but starting from the last actual value
|
977 |
for i in range(1, len(macd_pred)):
|
978 |
macd_pred[i] = last_actual + original_trend * i
|
979 |
-
|
980 |
-
|
981 |
-
|
982 |
-
|
|
|
|
|
983 |
if actual_prediction_length < trim_length:
|
984 |
-
|
985 |
-
|
986 |
remaining_steps = trim_length - actual_prediction_length
|
987 |
steps_needed = (remaining_steps + actual_prediction_length - 1) // actual_prediction_length
|
|
|
988 |
for step in range(steps_needed):
|
989 |
-
# Use all available datapoints for context,
|
990 |
-
|
|
|
991 |
|
992 |
-
# If we have more data than
|
993 |
# Otherwise, use all available data (this allows for longer context when available)
|
994 |
-
if len(all_available_data) >
|
995 |
-
context_window = all_available_data[-
|
996 |
else:
|
997 |
context_window = all_available_data
|
998 |
|
999 |
-
|
1000 |
-
|
|
|
1001 |
context = torch.tensor(normalized_context, dtype=dtype, device=device)
|
1002 |
if len(context.shape) == 1:
|
1003 |
context = context.unsqueeze(0)
|
1004 |
-
|
|
|
1005 |
with torch.amp.autocast('cuda'):
|
1006 |
next_quantiles, next_mean = pipe.predict_quantiles(
|
1007 |
context=context,
|
@@ -1014,14 +1080,26 @@ def make_prediction(symbol: str, timeframe: str = "1d", prediction_days: int = 5
|
|
1014 |
next_lower = macd_scaler.inverse_transform(next_quantiles[0, :, 0].reshape(-1, 1)).flatten()
|
1015 |
next_upper = macd_scaler.inverse_transform(next_quantiles[0, :, 2].reshape(-1, 1)).flatten()
|
1016 |
next_std_pred = (next_upper - next_lower) / (2 * 1.645)
|
1017 |
-
|
1018 |
-
|
1019 |
-
|
1020 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1021 |
remaining_steps -= len(next_mean_pred)
|
1022 |
if remaining_steps <= 0:
|
1023 |
break
|
1024 |
-
macd_pred =
|
1025 |
else:
|
1026 |
last_macd = df['MACD'].iloc[-1]
|
1027 |
macd_pred = np.full(trim_length, last_macd)
|
@@ -1913,6 +1991,198 @@ def advanced_trading_signals(df: pd.DataFrame, regime_info: Dict = None) -> Dict
|
|
1913 |
print(f"Advanced trading signals error: {str(e)}")
|
1914 |
return {"error": str(e)}
|
1915 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1916 |
def create_interface():
|
1917 |
"""Create the Gradio interface with separate tabs for different timeframes"""
|
1918 |
with gr.Blocks(title="Advanced Stock Prediction Analysis") as demo:
|
@@ -1935,6 +2205,37 @@ def create_interface():
|
|
1935 |
use_regime_detection = gr.Checkbox(label="Use Regime Detection", value=True)
|
1936 |
use_stress_testing = gr.Checkbox(label="Use Stress Testing", value=True)
|
1937 |
use_smoothing = gr.Checkbox(label="Use Smoothing", value=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1938 |
risk_free_rate = gr.Slider(
|
1939 |
minimum=0.0,
|
1940 |
maximum=0.1,
|
@@ -2005,6 +2306,22 @@ def create_interface():
|
|
2005 |
value="chronos"
|
2006 |
)
|
2007 |
daily_predict_btn = gr.Button("Analyze Stock")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2008 |
|
2009 |
with gr.Column():
|
2010 |
daily_plot = gr.Plot(label="Analysis and Prediction")
|
@@ -2168,7 +2485,7 @@ def create_interface():
|
|
2168 |
def analyze_stock(symbol, timeframe, prediction_days, lookback_days, strategy,
|
2169 |
use_ensemble, use_regime_detection, use_stress_testing,
|
2170 |
risk_free_rate, market_index, chronos_weight, technical_weight, statistical_weight,
|
2171 |
-
random_real_points, use_smoothing):
|
2172 |
try:
|
2173 |
# Create ensemble weights
|
2174 |
ensemble_weights = {
|
@@ -2194,7 +2511,10 @@ def create_interface():
|
|
2194 |
ensemble_weights=ensemble_weights,
|
2195 |
market_index=market_index,
|
2196 |
random_real_points=random_real_points,
|
2197 |
-
use_smoothing=use_smoothing
|
|
|
|
|
|
|
2198 |
)
|
2199 |
|
2200 |
# Get historical data for additional metrics
|
@@ -2277,7 +2597,7 @@ def create_interface():
|
|
2277 |
# Daily analysis button click
|
2278 |
def daily_analysis(s: str, pd: int, ld: int, st: str, ue: bool, urd: bool, ust: bool,
|
2279 |
rfr: float, mi: str, cw: float, tw: float, sw: float,
|
2280 |
-
rrp: int, usm: bool) -> Tuple[Dict, go.Figure, Dict, Dict, Dict, Dict, Dict, Dict, Dict]:
|
2281 |
"""
|
2282 |
Process daily timeframe stock analysis with advanced features.
|
2283 |
|
@@ -2314,6 +2634,10 @@ def create_interface():
|
|
2314 |
rrp (int): Number of random real points to include in long-horizon context
|
2315 |
usm (bool): Use smoothing
|
2316 |
When True, applies smoothing to predictions to reduce noise and improve continuity
|
|
|
|
|
|
|
|
|
2317 |
|
2318 |
Returns:
|
2319 |
Tuple[Dict, go.Figure, Dict, Dict, Dict, Dict, Dict, Dict, Dict]: Analysis results containing:
|
@@ -2333,7 +2657,7 @@ def create_interface():
|
|
2333 |
|
2334 |
Example:
|
2335 |
>>> signals, plot, metrics, risk, sector, regime, stress, ensemble, advanced = daily_analysis(
|
2336 |
-
... "AAPL", 30, 365, "chronos", True, True, True, 0.02, "^GSPC", 0.6, 0.2, 0.2, 4, True
|
2337 |
... )
|
2338 |
|
2339 |
Notes:
|
@@ -2344,14 +2668,14 @@ def create_interface():
|
|
2344 |
- Risk-free rate is typically between 0.02-0.05 (2-5% annually)
|
2345 |
- Smoothing helps reduce prediction noise but may reduce responsiveness to sudden changes
|
2346 |
"""
|
2347 |
-
return analyze_stock(s, "1d", pd, ld, st, ue, urd, ust, rfr, mi, cw, tw, sw, rrp, usm)
|
2348 |
|
2349 |
daily_predict_btn.click(
|
2350 |
fn=daily_analysis,
|
2351 |
inputs=[daily_symbol, daily_prediction_days, daily_lookback_days, daily_strategy,
|
2352 |
use_ensemble, use_regime_detection, use_stress_testing, risk_free_rate, market_index,
|
2353 |
chronos_weight, technical_weight, statistical_weight,
|
2354 |
-
random_real_points, use_smoothing],
|
2355 |
outputs=[daily_signals, daily_plot, daily_metrics, daily_risk_metrics, daily_sector_metrics,
|
2356 |
daily_regime_metrics, daily_stress_results, daily_ensemble_metrics, daily_signals_advanced]
|
2357 |
)
|
@@ -2359,7 +2683,7 @@ def create_interface():
|
|
2359 |
# Hourly analysis button click
|
2360 |
def hourly_analysis(s: str, pd: int, ld: int, st: str, ue: bool, urd: bool, ust: bool,
|
2361 |
rfr: float, mi: str, cw: float, tw: float, sw: float,
|
2362 |
-
rrp: int, usm: bool) -> Tuple[Dict, go.Figure, Dict, Dict, Dict, Dict, Dict, Dict, Dict]:
|
2363 |
"""
|
2364 |
Process hourly timeframe stock analysis with advanced features.
|
2365 |
|
@@ -2396,6 +2720,10 @@ def create_interface():
|
|
2396 |
rrp (int): Number of random real points to include in long-horizon context
|
2397 |
usm (bool): Use smoothing
|
2398 |
When True, applies smoothing to predictions to reduce noise and improve continuity
|
|
|
|
|
|
|
|
|
2399 |
|
2400 |
Returns:
|
2401 |
Tuple[Dict, go.Figure, Dict, Dict, Dict, Dict, Dict, Dict, Dict]: Analysis results containing:
|
@@ -2415,7 +2743,7 @@ def create_interface():
|
|
2415 |
|
2416 |
Example:
|
2417 |
>>> signals, plot, metrics, risk, sector, regime, stress, ensemble, advanced = hourly_analysis(
|
2418 |
-
... "AAPL", 3, 14, "chronos", True, True, True, 0.02, "^GSPC", 0.6, 0.2, 0.2, 4, True
|
2419 |
... )
|
2420 |
|
2421 |
Notes:
|
@@ -2427,14 +2755,14 @@ def create_interface():
|
|
2427 |
- Requires high-liquidity stocks for reliable hourly analysis
|
2428 |
- Smoothing helps reduce prediction noise but may reduce responsiveness to sudden changes
|
2429 |
"""
|
2430 |
-
return analyze_stock(s, "1h", pd, ld, st, ue, urd, ust, rfr, mi, cw, tw, sw, rrp, usm)
|
2431 |
|
2432 |
hourly_predict_btn.click(
|
2433 |
fn=hourly_analysis,
|
2434 |
inputs=[hourly_symbol, hourly_prediction_days, hourly_lookback_days, hourly_strategy,
|
2435 |
use_ensemble, use_regime_detection, use_stress_testing, risk_free_rate, market_index,
|
2436 |
chronos_weight, technical_weight, statistical_weight,
|
2437 |
-
random_real_points, use_smoothing],
|
2438 |
outputs=[hourly_signals, hourly_plot, hourly_metrics, hourly_risk_metrics, hourly_sector_metrics,
|
2439 |
hourly_regime_metrics, hourly_stress_results, hourly_ensemble_metrics, hourly_signals_advanced]
|
2440 |
)
|
@@ -2442,7 +2770,7 @@ def create_interface():
|
|
2442 |
# 15-minute analysis button click
|
2443 |
def min15_analysis(s: str, pd: int, ld: int, st: str, ue: bool, urd: bool, ust: bool,
|
2444 |
rfr: float, mi: str, cw: float, tw: float, sw: float,
|
2445 |
-
rrp: int, usm: bool) -> Tuple[Dict, go.Figure, Dict, Dict, Dict, Dict, Dict, Dict, Dict]:
|
2446 |
"""
|
2447 |
Process 15-minute timeframe stock analysis with advanced features.
|
2448 |
|
@@ -2479,6 +2807,10 @@ def create_interface():
|
|
2479 |
rrp (int): Number of random real points to include in long-horizon context
|
2480 |
usm (bool): Use smoothing
|
2481 |
When True, applies smoothing to predictions to reduce noise and improve continuity
|
|
|
|
|
|
|
|
|
2482 |
|
2483 |
Returns:
|
2484 |
Tuple[Dict, go.Figure, Dict, Dict, Dict, Dict, Dict, Dict, Dict]: Analysis results containing:
|
@@ -2498,7 +2830,7 @@ def create_interface():
|
|
2498 |
|
2499 |
Example:
|
2500 |
>>> signals, plot, metrics, risk, sector, regime, stress, ensemble, advanced = min15_analysis(
|
2501 |
-
... "AAPL", 1, 3, "chronos", True, True, True, 0.02, "^GSPC", 0.6, 0.2, 0.2, 4, True
|
2502 |
... )
|
2503 |
|
2504 |
Notes:
|
@@ -2512,14 +2844,14 @@ def create_interface():
|
|
2512 |
- Best suited for highly liquid large-cap stocks with tight bid-ask spreads
|
2513 |
- Smoothing helps reduce prediction noise but may reduce responsiveness to sudden changes
|
2514 |
"""
|
2515 |
-
return analyze_stock(s, "15m", pd, ld, st, ue, urd, ust, rfr, mi, cw, tw, sw, rrp, usm)
|
2516 |
|
2517 |
min15_predict_btn.click(
|
2518 |
fn=min15_analysis,
|
2519 |
inputs=[min15_symbol, min15_prediction_days, min15_lookback_days, min15_strategy,
|
2520 |
use_ensemble, use_regime_detection, use_stress_testing, risk_free_rate, market_index,
|
2521 |
chronos_weight, technical_weight, statistical_weight,
|
2522 |
-
random_real_points, use_smoothing],
|
2523 |
outputs=[min15_signals, min15_plot, min15_metrics, min15_risk_metrics, min15_sector_metrics,
|
2524 |
min15_regime_metrics, min15_stress_results, min15_ensemble_metrics, min15_signals_advanced]
|
2525 |
)
|
|
|
371 |
use_ensemble: bool = True, use_regime_detection: bool = True, use_stress_testing: bool = True,
|
372 |
risk_free_rate: float = 0.02, ensemble_weights: Dict = None,
|
373 |
market_index: str = "^GSPC",
|
374 |
+
random_real_points: int = 4, use_smoothing: bool = True,
|
375 |
+
smoothing_type: str = "exponential", smoothing_window: int = 5,
|
376 |
+
smoothing_alpha: float = 0.3) -> Tuple[Dict, go.Figure]:
|
377 |
"""
|
378 |
Make prediction using selected strategy with advanced features.
|
379 |
|
|
|
390 |
market_index (str): Market index for correlation analysis
|
391 |
random_real_points (int): Number of random real points to include in long-horizon context
|
392 |
use_smoothing (bool): Whether to apply smoothing to predictions
|
393 |
+
smoothing_type (str): Type of smoothing to apply ('exponential', 'moving_average', 'kalman', 'savitzky_golay', 'none')
|
394 |
|
395 |
Returns:
|
396 |
Tuple[Dict, go.Figure]: Trading signals and visualization plot
|
|
|
403 |
try:
|
404 |
# Prepare data for Chronos
|
405 |
prices = df['Close'].values
|
406 |
+
chronos_context_size = 64 # Chronos model's context window size (fixed at 64)
|
407 |
+
input_context_size = len(prices) # Available input data can be much larger
|
408 |
+
|
409 |
# Use a larger range for scaler fitting to get better normalization
|
410 |
+
scaler_range = min(input_context_size, chronos_context_size * 2) # Use up to 128 points for scaler
|
411 |
+
|
412 |
+
# Select the most recent chronos_context_size points for the model input
|
413 |
+
context_window = prices[-chronos_context_size:]
|
414 |
+
|
415 |
scaler = MinMaxScaler(feature_range=(-1, 1))
|
416 |
# Fit scaler on a larger range for better normalization
|
417 |
scaler.fit(prices[-scaler_range:].reshape(-1, 1))
|
418 |
normalized_prices = scaler.transform(context_window.reshape(-1, 1)).flatten()
|
419 |
|
420 |
+
# Ensure we have enough data points for Chronos
|
421 |
+
min_data_points = chronos_context_size
|
422 |
if len(normalized_prices) < min_data_points:
|
423 |
padding = np.full(min_data_points - len(normalized_prices), normalized_prices[-1])
|
424 |
normalized_prices = np.concatenate([padding, normalized_prices])
|
|
|
439 |
|
440 |
# Adjust prediction length based on timeframe
|
441 |
if timeframe == "1d":
|
442 |
+
max_prediction_length = chronos_context_size # 64 days
|
443 |
actual_prediction_length = min(prediction_days, max_prediction_length)
|
444 |
trim_length = prediction_days
|
445 |
elif timeframe == "1h":
|
446 |
+
max_prediction_length = chronos_context_size # 64 hours
|
447 |
actual_prediction_length = min(prediction_days * 24, max_prediction_length)
|
448 |
trim_length = prediction_days * 24
|
449 |
else: # 15m
|
450 |
+
max_prediction_length = chronos_context_size # 64 intervals
|
451 |
actual_prediction_length = min(prediction_days * 96, max_prediction_length)
|
452 |
trim_length = prediction_days * 96
|
453 |
actual_prediction_length = max(1, actual_prediction_length)
|
|
|
662 |
# Apply the same trend but starting from the last actual value
|
663 |
for i in range(1, len(mean_pred)):
|
664 |
mean_pred[i] = last_actual + original_trend * i
|
665 |
+
|
666 |
+
# Apply financial smoothing if enabled
|
667 |
+
if use_smoothing:
|
668 |
+
mean_pred = apply_financial_smoothing(mean_pred, smoothing_type, smoothing_window, smoothing_alpha, 3, use_smoothing)
|
669 |
|
670 |
# If we had to limit the prediction length, extend the prediction recursively
|
671 |
if actual_prediction_length < trim_length:
|
672 |
extended_mean_pred = mean_pred.copy()
|
673 |
extended_std_pred = std_pred.copy()
|
674 |
|
675 |
+
# Store the original scaler for consistency
|
676 |
+
original_scaler = scaler
|
677 |
+
|
678 |
# Calculate the number of extension steps needed
|
679 |
remaining_steps = trim_length - actual_prediction_length
|
680 |
steps_needed = (remaining_steps + actual_prediction_length - 1) // actual_prediction_length
|
681 |
+
|
682 |
for step in range(steps_needed):
|
683 |
+
# Use all available datapoints for context, including predictions
|
684 |
+
# This allows the model to build upon its own predictions for better long-horizon forecasting
|
685 |
all_available_data = np.concatenate([prices, extended_mean_pred])
|
686 |
|
687 |
+
# If we have more data than chronos_context_size, use the most recent chronos_context_size points
|
688 |
# Otherwise, use all available data (this allows for longer context when available)
|
689 |
+
if len(all_available_data) > chronos_context_size:
|
690 |
+
context_window = all_available_data[-chronos_context_size:]
|
691 |
else:
|
692 |
context_window = all_available_data
|
693 |
|
694 |
+
# Use the original scaler to maintain consistency - fit on historical data only
|
695 |
+
# but transform the combined context window
|
696 |
+
normalized_context = original_scaler.transform(context_window.reshape(-1, 1)).flatten()
|
|
|
697 |
context = torch.tensor(normalized_context, dtype=dtype, device=device)
|
698 |
if len(context.shape) == 1:
|
699 |
context = context.unsqueeze(0)
|
|
|
705 |
next_length = min(max_prediction_length, remaining_steps)
|
706 |
else:
|
707 |
next_length = min(max_prediction_length, remaining_steps)
|
708 |
+
|
709 |
with torch.amp.autocast('cuda'):
|
710 |
next_quantiles, next_mean = pipe.predict_quantiles(
|
711 |
context=context,
|
|
|
713 |
quantile_levels=[0.1, 0.5, 0.9]
|
714 |
)
|
715 |
|
716 |
+
# Convert predictions to numpy and denormalize using original scaler
|
717 |
next_mean = next_mean.detach().cpu().numpy()
|
718 |
next_quantiles = next_quantiles.detach().cpu().numpy()
|
719 |
|
720 |
+
# Denormalize predictions using the original scaler
|
721 |
+
next_mean_pred = original_scaler.inverse_transform(next_mean.reshape(-1, 1)).flatten()
|
722 |
+
next_lower = original_scaler.inverse_transform(next_quantiles[0, :, 0].reshape(-1, 1)).flatten()
|
723 |
+
next_upper = original_scaler.inverse_transform(next_quantiles[0, :, 2].reshape(-1, 1)).flatten()
|
724 |
|
725 |
# Calculate standard deviation
|
726 |
next_std_pred = (next_upper - next_lower) / (2 * 1.645)
|
727 |
+
|
728 |
+
# Check for discontinuity and apply continuity correction
|
729 |
if abs(next_mean_pred[0] - extended_mean_pred[-1]) > max(1e-6, 0.05 * abs(extended_mean_pred[-1])):
|
730 |
print(f"Warning: Discontinuity detected between last prediction ({extended_mean_pred[-1]}) and next prediction ({next_mean_pred[0]})")
|
731 |
+
# Apply continuity correction to first prediction
|
732 |
+
next_mean_pred[0] = extended_mean_pred[-1]
|
733 |
+
# Adjust subsequent predictions to maintain trend
|
734 |
+
if len(next_mean_pred) > 1:
|
735 |
+
original_trend = next_mean_pred[1] - next_mean_pred[0]
|
736 |
+
for i in range(1, len(next_mean_pred)):
|
737 |
+
next_mean_pred[i] = extended_mean_pred[-1] + original_trend * i
|
738 |
+
|
739 |
+
# Apply financial smoothing if enabled
|
740 |
+
if use_smoothing and len(next_mean_pred) > 1:
|
741 |
+
next_mean_pred = apply_financial_smoothing(next_mean_pred, smoothing_type, smoothing_window, smoothing_alpha, 3, use_smoothing)
|
742 |
+
|
743 |
# Append predictions
|
744 |
extended_mean_pred = np.concatenate([extended_mean_pred, next_mean_pred])
|
745 |
extended_std_pred = np.concatenate([extended_std_pred, next_std_pred])
|
|
|
759 |
try:
|
760 |
# Prepare volume data for Chronos
|
761 |
volume_data = df['Volume'].values
|
762 |
+
if len(volume_data) >= chronos_context_size:
|
763 |
# Normalize volume data
|
764 |
+
scaler_range = min(len(volume_data), chronos_context_size * 2)
|
765 |
+
context_window = volume_data[-chronos_context_size:]
|
|
|
766 |
volume_scaler = MinMaxScaler(feature_range=(-1, 1))
|
767 |
# Fit scaler on a larger range for better normalization
|
768 |
volume_scaler.fit(volume_data[-scaler_range:].reshape(-1, 1))
|
769 |
normalized_volume = volume_scaler.transform(context_window.reshape(-1, 1)).flatten()
|
770 |
+
if len(normalized_volume) < chronos_context_size:
|
771 |
+
padding = np.full(chronos_context_size - len(normalized_volume), normalized_volume[-1])
|
772 |
normalized_volume = np.concatenate([padding, normalized_volume])
|
773 |
+
elif len(normalized_volume) > chronos_context_size:
|
774 |
+
normalized_volume = normalized_volume[-chronos_context_size:]
|
775 |
volume_context = torch.tensor(normalized_volume, dtype=dtype, device=device)
|
776 |
if len(volume_context.shape) == 1:
|
777 |
volume_context = volume_context.unsqueeze(0)
|
|
|
789 |
std_pred_vol = (upper_bound - lower_bound) / (2 * 1.645)
|
790 |
last_actual = volume_data[-1]
|
791 |
first_pred = volume_pred[0]
|
792 |
+
if abs(first_pred - last_actual) > max(1e-6, 0.005 * abs(last_actual)):
|
793 |
print(f"Warning: Discontinuity detected between last actual volume ({last_actual}) and first prediction ({first_pred})")
|
794 |
# Apply continuity correction
|
795 |
volume_pred[0] = last_actual
|
|
|
800 |
# Apply the same trend but starting from the last actual value
|
801 |
for i in range(1, len(volume_pred)):
|
802 |
volume_pred[i] = last_actual + original_trend * i
|
803 |
+
|
804 |
+
# Apply financial smoothing if enabled
|
805 |
+
if use_smoothing:
|
806 |
+
volume_pred = apply_financial_smoothing(volume_pred, smoothing_type, smoothing_window, smoothing_alpha, 3, use_smoothing)
|
807 |
+
|
808 |
# Extend volume predictions if needed
|
809 |
if actual_prediction_length < trim_length:
|
810 |
+
extended_volume_pred = volume_pred.copy()
|
811 |
+
extended_volume_std = std_pred_vol.copy()
|
812 |
remaining_steps = trim_length - actual_prediction_length
|
813 |
steps_needed = (remaining_steps + actual_prediction_length - 1) // actual_prediction_length
|
814 |
+
|
815 |
for step in range(steps_needed):
|
816 |
+
# Use all available datapoints for context, including predictions
|
817 |
+
# This allows the model to build upon its own predictions for better long-horizon forecasting
|
818 |
+
all_available_data = np.concatenate([volume_data, extended_volume_pred])
|
819 |
|
820 |
+
# If we have more data than chronos_context_size, use the most recent chronos_context_size points
|
821 |
# Otherwise, use all available data (this allows for longer context when available)
|
822 |
+
if len(all_available_data) > chronos_context_size:
|
823 |
+
context_window = all_available_data[-chronos_context_size:]
|
824 |
else:
|
825 |
context_window = all_available_data
|
826 |
|
827 |
+
# Use the original volume scaler to maintain consistency - fit on historical data only
|
828 |
+
# but transform the combined context window
|
829 |
+
normalized_context = volume_scaler.transform(context_window.reshape(-1, 1)).flatten()
|
830 |
context = torch.tensor(normalized_context, dtype=dtype, device=device)
|
831 |
if len(context.shape) == 1:
|
832 |
context = context.unsqueeze(0)
|
833 |
+
|
834 |
+
next_length = min(chronos_context_size, remaining_steps)
|
835 |
with torch.amp.autocast('cuda'):
|
836 |
next_quantiles, next_mean = pipe.predict_quantiles(
|
837 |
context=context,
|
|
|
844 |
next_lower = volume_scaler.inverse_transform(next_quantiles[0, :, 0].reshape(-1, 1)).flatten()
|
845 |
next_upper = volume_scaler.inverse_transform(next_quantiles[0, :, 2].reshape(-1, 1)).flatten()
|
846 |
next_std_pred = (next_upper - next_lower) / (2 * 1.645)
|
847 |
+
|
848 |
+
# Check for discontinuity and apply continuity correction
|
849 |
+
if abs(next_mean_pred[0] - extended_volume_pred[-1]) > max(1e-6, 0.05 * abs(extended_volume_pred[-1])):
|
850 |
+
print(f"Warning: Discontinuity detected between last volume prediction ({extended_volume_pred[-1]}) and next prediction ({next_mean_pred[0]})")
|
851 |
+
next_mean_pred[0] = extended_volume_pred[-1]
|
852 |
+
if len(next_mean_pred) > 1:
|
853 |
+
original_trend = next_mean_pred[1] - next_mean_pred[0]
|
854 |
+
for i in range(1, len(next_mean_pred)):
|
855 |
+
next_mean_pred[i] = extended_volume_pred[-1] + original_trend * i
|
856 |
+
|
857 |
+
# Apply financial smoothing if enabled
|
858 |
+
if use_smoothing and len(next_mean_pred) > 1:
|
859 |
+
next_mean_pred = apply_financial_smoothing(next_mean_pred, smoothing_type, smoothing_window, smoothing_alpha, 3, use_smoothing)
|
860 |
+
|
861 |
+
extended_volume_pred = np.concatenate([extended_volume_pred, next_mean_pred])
|
862 |
+
extended_volume_std = np.concatenate([extended_volume_std, next_std_pred])
|
863 |
remaining_steps -= len(next_mean_pred)
|
864 |
if remaining_steps <= 0:
|
865 |
break
|
866 |
+
volume_pred = extended_volume_pred[:trim_length]
|
867 |
else:
|
868 |
avg_volume = df['Volume'].mean()
|
869 |
volume_pred = np.full(trim_length, avg_volume)
|
|
|
872 |
# Fallback: use historical average
|
873 |
avg_volume = df['Volume'].mean()
|
874 |
volume_pred = np.full(trim_length, avg_volume)
|
875 |
+
|
876 |
try:
|
877 |
# Prepare RSI data for Chronos
|
878 |
rsi_data = df['RSI'].values
|
879 |
+
if len(rsi_data) >= chronos_context_size and not np.any(np.isnan(rsi_data)):
|
880 |
# RSI is already normalized (0-100), but we'll scale it to (-1, 1)
|
881 |
+
scaler_range = min(len(rsi_data), chronos_context_size * 2)
|
882 |
+
context_window = rsi_data[-chronos_context_size:]
|
|
|
883 |
rsi_scaler = MinMaxScaler(feature_range=(-1, 1))
|
884 |
# Fit scaler on a larger range for better normalization
|
885 |
rsi_scaler.fit(rsi_data[-scaler_range:].reshape(-1, 1))
|
886 |
normalized_rsi = rsi_scaler.transform(context_window.reshape(-1, 1)).flatten()
|
887 |
+
if len(normalized_rsi) < chronos_context_size:
|
888 |
+
padding = np.full(chronos_context_size - len(normalized_rsi), normalized_rsi[-1])
|
889 |
normalized_rsi = np.concatenate([padding, normalized_rsi])
|
890 |
+
elif len(normalized_rsi) > chronos_context_size:
|
891 |
+
normalized_rsi = normalized_rsi[-chronos_context_size:]
|
892 |
rsi_context = torch.tensor(normalized_rsi, dtype=dtype, device=device)
|
893 |
if len(rsi_context.shape) == 1:
|
894 |
rsi_context = rsi_context.unsqueeze(0)
|
|
|
909 |
rsi_pred = np.clip(rsi_pred, 0, 100)
|
910 |
last_actual = rsi_data[-1]
|
911 |
first_pred = rsi_pred[0]
|
912 |
+
if abs(first_pred - last_actual) > max(1e-6, 0.005 * abs(last_actual)):
|
913 |
print(f"Warning: Discontinuity detected between last actual RSI ({last_actual}) and first prediction ({first_pred})")
|
914 |
# Apply continuity correction
|
915 |
rsi_pred[0] = last_actual
|
|
|
917 |
trend = rsi_pred[1] - first_pred
|
918 |
rsi_pred[1:] = rsi_pred[1:] - first_pred + last_actual
|
919 |
rsi_pred = np.clip(rsi_pred, 0, 100) # Re-clip after adjustment
|
920 |
+
|
921 |
# Extend RSI predictions if needed
|
922 |
if actual_prediction_length < trim_length:
|
923 |
+
extended_rsi_pred = rsi_pred.copy()
|
924 |
+
extended_rsi_std = std_pred_rsi.copy()
|
925 |
remaining_steps = trim_length - actual_prediction_length
|
926 |
steps_needed = (remaining_steps + actual_prediction_length - 1) // actual_prediction_length
|
927 |
+
|
928 |
for step in range(steps_needed):
|
929 |
+
# Use all available datapoints for context, including predictions
|
930 |
+
# This allows the model to build upon its own predictions for better long-horizon forecasting
|
931 |
+
all_available_data = np.concatenate([rsi_data, extended_rsi_pred])
|
932 |
|
933 |
+
# If we have more data than chronos_context_size, use the most recent chronos_context_size points
|
934 |
# Otherwise, use all available data (this allows for longer context when available)
|
935 |
+
if len(all_available_data) > chronos_context_size:
|
936 |
+
context_window = all_available_data[-chronos_context_size:]
|
937 |
else:
|
938 |
context_window = all_available_data
|
939 |
|
940 |
+
# Use the original RSI scaler to maintain consistency - fit on historical data only
|
941 |
+
# but transform the combined context window
|
942 |
+
normalized_context = rsi_scaler.transform(context_window.reshape(-1, 1)).flatten()
|
943 |
context = torch.tensor(normalized_context, dtype=dtype, device=device)
|
944 |
if len(context.shape) == 1:
|
945 |
context = context.unsqueeze(0)
|
946 |
+
|
947 |
+
next_length = min(chronos_context_size, remaining_steps)
|
948 |
with torch.amp.autocast('cuda'):
|
949 |
next_quantiles, next_mean = pipe.predict_quantiles(
|
950 |
context=context,
|
|
|
958 |
next_upper = rsi_scaler.inverse_transform(next_quantiles[0, :, 2].reshape(-1, 1)).flatten()
|
959 |
next_std_pred = (next_upper - next_lower) / (2 * 1.645)
|
960 |
next_mean_pred = np.clip(next_mean_pred, 0, 100)
|
961 |
+
|
962 |
+
# Check for discontinuity and apply continuity correction
|
963 |
+
if abs(next_mean_pred[0] - extended_rsi_pred[-1]) > max(1e-6, 0.005 * abs(extended_rsi_pred[-1])):
|
964 |
+
print(f"Warning: Discontinuity detected between last RSI prediction ({extended_rsi_pred[-1]}) and next prediction ({next_mean_pred[0]})")
|
965 |
+
next_mean_pred[0] = extended_rsi_pred[-1]
|
966 |
+
if len(next_mean_pred) > 1:
|
967 |
+
original_trend = next_mean_pred[1] - next_mean_pred[0]
|
968 |
+
for i in range(1, len(next_mean_pred)):
|
969 |
+
next_mean_pred[i] = extended_rsi_pred[-1] + original_trend * i
|
970 |
+
next_mean_pred = np.clip(next_mean_pred, 0, 100)
|
971 |
+
|
972 |
+
# Apply financial smoothing if enabled
|
973 |
+
if use_smoothing and len(next_mean_pred) > 1:
|
974 |
+
next_mean_pred = apply_financial_smoothing(next_mean_pred, smoothing_type, smoothing_window, smoothing_alpha, 3, use_smoothing)
|
975 |
+
next_mean_pred = np.clip(next_mean_pred, 0, 100)
|
976 |
+
|
977 |
+
extended_rsi_pred = np.concatenate([extended_rsi_pred, next_mean_pred])
|
978 |
+
extended_rsi_std = np.concatenate([extended_rsi_std, next_std_pred])
|
979 |
remaining_steps -= len(next_mean_pred)
|
980 |
if remaining_steps <= 0:
|
981 |
break
|
982 |
+
rsi_pred = extended_rsi_pred[:trim_length]
|
983 |
else:
|
984 |
last_rsi = df['RSI'].iloc[-1]
|
985 |
rsi_pred = np.full(trim_length, last_rsi)
|
|
|
988 |
# Fallback: use last known RSI value
|
989 |
last_rsi = df['RSI'].iloc[-1]
|
990 |
rsi_pred = np.full(trim_length, last_rsi)
|
991 |
+
|
992 |
try:
|
993 |
# Prepare MACD data for Chronos
|
994 |
macd_data = df['MACD'].values
|
995 |
+
if len(macd_data) >= chronos_context_size and not np.any(np.isnan(macd_data)):
|
996 |
# Normalize MACD data
|
997 |
+
scaler_range = min(len(macd_data), chronos_context_size * 2)
|
998 |
+
context_window = macd_data[-chronos_context_size:]
|
|
|
999 |
macd_scaler = MinMaxScaler(feature_range=(-1, 1))
|
1000 |
# Fit scaler on a larger range for better normalization
|
1001 |
macd_scaler.fit(macd_data[-scaler_range:].reshape(-1, 1))
|
1002 |
normalized_macd = macd_scaler.transform(context_window.reshape(-1, 1)).flatten()
|
1003 |
+
if len(normalized_macd) < chronos_context_size:
|
1004 |
+
padding = np.full(chronos_context_size - len(normalized_macd), normalized_macd[-1])
|
1005 |
normalized_macd = np.concatenate([padding, normalized_macd])
|
1006 |
+
elif len(normalized_macd) > chronos_context_size:
|
1007 |
+
normalized_macd = normalized_macd[-chronos_context_size:]
|
1008 |
macd_context = torch.tensor(normalized_macd, dtype=dtype, device=device)
|
1009 |
if len(macd_context.shape) == 1:
|
1010 |
macd_context = macd_context.unsqueeze(0)
|
|
|
1024 |
last_actual = macd_data[-1]
|
1025 |
first_pred = macd_pred[0]
|
1026 |
|
1027 |
+
# Check for discontinuity and apply continuity correction
|
1028 |
+
if abs(first_pred - last_actual) > max(1e-6, 0.005 * abs(last_actual)):
|
1029 |
print(f"Warning: Discontinuity detected between last actual MACD ({last_actual}) and first prediction ({first_pred})")
|
1030 |
# Apply continuity correction
|
1031 |
macd_pred[0] = last_actual
|
|
|
1036 |
# Apply the same trend but starting from the last actual value
|
1037 |
for i in range(1, len(macd_pred)):
|
1038 |
macd_pred[i] = last_actual + original_trend * i
|
1039 |
+
|
1040 |
+
# Apply financial smoothing if enabled
|
1041 |
+
if use_smoothing:
|
1042 |
+
macd_pred = apply_financial_smoothing(macd_pred, smoothing_type, smoothing_window, smoothing_alpha, 3, use_smoothing)
|
1043 |
+
|
1044 |
+
# Extend MACD predictions if needed
|
1045 |
if actual_prediction_length < trim_length:
|
1046 |
+
extended_macd_pred = macd_pred.copy()
|
1047 |
+
extended_macd_std = std_pred_macd.copy()
|
1048 |
remaining_steps = trim_length - actual_prediction_length
|
1049 |
steps_needed = (remaining_steps + actual_prediction_length - 1) // actual_prediction_length
|
1050 |
+
|
1051 |
for step in range(steps_needed):
|
1052 |
+
# Use all available datapoints for context, including predictions
|
1053 |
+
# This allows the model to build upon its own predictions for better long-horizon forecasting
|
1054 |
+
all_available_data = np.concatenate([macd_data, extended_macd_pred])
|
1055 |
|
1056 |
+
# If we have more data than chronos_context_size, use the most recent chronos_context_size points
|
1057 |
# Otherwise, use all available data (this allows for longer context when available)
|
1058 |
+
if len(all_available_data) > chronos_context_size:
|
1059 |
+
context_window = all_available_data[-chronos_context_size:]
|
1060 |
else:
|
1061 |
context_window = all_available_data
|
1062 |
|
1063 |
+
# Use the original MACD scaler to maintain consistency - fit on historical data only
|
1064 |
+
# but transform the combined context window
|
1065 |
+
normalized_context = macd_scaler.transform(context_window.reshape(-1, 1)).flatten()
|
1066 |
context = torch.tensor(normalized_context, dtype=dtype, device=device)
|
1067 |
if len(context.shape) == 1:
|
1068 |
context = context.unsqueeze(0)
|
1069 |
+
|
1070 |
+
next_length = min(chronos_context_size, remaining_steps)
|
1071 |
with torch.amp.autocast('cuda'):
|
1072 |
next_quantiles, next_mean = pipe.predict_quantiles(
|
1073 |
context=context,
|
|
|
1080 |
next_lower = macd_scaler.inverse_transform(next_quantiles[0, :, 0].reshape(-1, 1)).flatten()
|
1081 |
next_upper = macd_scaler.inverse_transform(next_quantiles[0, :, 2].reshape(-1, 1)).flatten()
|
1082 |
next_std_pred = (next_upper - next_lower) / (2 * 1.645)
|
1083 |
+
|
1084 |
+
# Check for discontinuity and apply continuity correction
|
1085 |
+
if abs(next_mean_pred[0] - extended_macd_pred[-1]) > max(1e-6, 0.05 * abs(extended_macd_pred[-1])):
|
1086 |
+
print(f"Warning: Discontinuity detected between last MACD prediction ({extended_macd_pred[-1]}) and next prediction ({next_mean_pred[0]})")
|
1087 |
+
next_mean_pred[0] = extended_macd_pred[-1]
|
1088 |
+
if len(next_mean_pred) > 1:
|
1089 |
+
original_trend = next_mean_pred[1] - next_mean_pred[0]
|
1090 |
+
for i in range(1, len(next_mean_pred)):
|
1091 |
+
next_mean_pred[i] = extended_macd_pred[-1] + original_trend * i
|
1092 |
+
|
1093 |
+
# Apply financial smoothing if enabled
|
1094 |
+
if use_smoothing and len(next_mean_pred) > 1:
|
1095 |
+
next_mean_pred = apply_financial_smoothing(next_mean_pred, smoothing_type, smoothing_window, smoothing_alpha, 3, use_smoothing)
|
1096 |
+
|
1097 |
+
extended_macd_pred = np.concatenate([extended_macd_pred, next_mean_pred])
|
1098 |
+
extended_macd_std = np.concatenate([extended_macd_std, next_std_pred])
|
1099 |
remaining_steps -= len(next_mean_pred)
|
1100 |
if remaining_steps <= 0:
|
1101 |
break
|
1102 |
+
macd_pred = extended_macd_pred[:trim_length]
|
1103 |
else:
|
1104 |
last_macd = df['MACD'].iloc[-1]
|
1105 |
macd_pred = np.full(trim_length, last_macd)
|
|
|
1991 |
print(f"Advanced trading signals error: {str(e)}")
|
1992 |
return {"error": str(e)}
|
1993 |
|
1994 |
+
def apply_financial_smoothing(data: np.ndarray, smoothing_type: str = "exponential",
|
1995 |
+
window_size: int = 5, alpha: float = 0.3,
|
1996 |
+
poly_order: int = 3, use_smoothing: bool = True) -> np.ndarray:
|
1997 |
+
"""
|
1998 |
+
Apply financial smoothing algorithms to time series data.
|
1999 |
+
|
2000 |
+
Args:
|
2001 |
+
data (np.ndarray): Input time series data
|
2002 |
+
smoothing_type (str): Type of smoothing to apply
|
2003 |
+
- 'exponential': Exponential moving average (good for trend following)
|
2004 |
+
- 'moving_average': Simple moving average (good for noise reduction)
|
2005 |
+
- 'kalman': Kalman filter (good for adaptive smoothing)
|
2006 |
+
- 'savitzky_golay': Savitzky-Golay filter (good for preserving peaks/valleys)
|
2007 |
+
- 'double_exponential': Double exponential smoothing (good for trend + seasonality)
|
2008 |
+
- 'triple_exponential': Triple exponential smoothing (Holt-Winters, good for complex patterns)
|
2009 |
+
- 'adaptive': Adaptive smoothing based on volatility
|
2010 |
+
- 'none': No smoothing applied
|
2011 |
+
window_size (int): Window size for moving average and Savitzky-Golay
|
2012 |
+
alpha (float): Smoothing factor for exponential methods (0-1)
|
2013 |
+
poly_order (int): Polynomial order for Savitzky-Golay filter
|
2014 |
+
use_smoothing (bool): Whether to apply smoothing
|
2015 |
+
|
2016 |
+
Returns:
|
2017 |
+
np.ndarray: Smoothed data
|
2018 |
+
"""
|
2019 |
+
if not use_smoothing or smoothing_type == "none" or len(data) < 3:
|
2020 |
+
return data
|
2021 |
+
|
2022 |
+
try:
|
2023 |
+
if smoothing_type == "exponential":
|
2024 |
+
# Exponential Moving Average - good for trend following
|
2025 |
+
smoothed = np.zeros_like(data)
|
2026 |
+
smoothed[0] = data[0]
|
2027 |
+
for i in range(1, len(data)):
|
2028 |
+
smoothed[i] = alpha * data[i] + (1 - alpha) * smoothed[i-1]
|
2029 |
+
return smoothed
|
2030 |
+
|
2031 |
+
elif smoothing_type == "moving_average":
|
2032 |
+
# Simple Moving Average - good for noise reduction
|
2033 |
+
if len(data) < window_size:
|
2034 |
+
return data
|
2035 |
+
|
2036 |
+
smoothed = np.zeros_like(data)
|
2037 |
+
# Handle the beginning of the series
|
2038 |
+
for i in range(min(window_size - 1, len(data))):
|
2039 |
+
smoothed[i] = np.mean(data[:i+1])
|
2040 |
+
|
2041 |
+
# Apply moving average for the rest
|
2042 |
+
for i in range(window_size - 1, len(data)):
|
2043 |
+
smoothed[i] = np.mean(data[i-window_size+1:i+1])
|
2044 |
+
return smoothed
|
2045 |
+
|
2046 |
+
elif smoothing_type == "kalman":
|
2047 |
+
# Kalman Filter - adaptive smoothing
|
2048 |
+
if len(data) < 2:
|
2049 |
+
return data
|
2050 |
+
|
2051 |
+
# Initialize Kalman filter parameters
|
2052 |
+
Q = 0.01 # Process noise
|
2053 |
+
R = 0.1 # Measurement noise
|
2054 |
+
P = 1.0 # Initial estimate error
|
2055 |
+
x = data[0] # Initial state estimate
|
2056 |
+
|
2057 |
+
smoothed = np.zeros_like(data)
|
2058 |
+
smoothed[0] = x
|
2059 |
+
|
2060 |
+
for i in range(1, len(data)):
|
2061 |
+
# Prediction step
|
2062 |
+
x_pred = x
|
2063 |
+
P_pred = P + Q
|
2064 |
+
|
2065 |
+
# Update step
|
2066 |
+
K = P_pred / (P_pred + R) # Kalman gain
|
2067 |
+
x = x_pred + K * (data[i] - x_pred)
|
2068 |
+
P = (1 - K) * P_pred
|
2069 |
+
|
2070 |
+
smoothed[i] = x
|
2071 |
+
|
2072 |
+
return smoothed
|
2073 |
+
|
2074 |
+
elif smoothing_type == "savitzky_golay":
|
2075 |
+
# Savitzky-Golay filter - preserves peaks and valleys
|
2076 |
+
if len(data) < window_size:
|
2077 |
+
return data
|
2078 |
+
|
2079 |
+
# Ensure window_size is odd
|
2080 |
+
if window_size % 2 == 0:
|
2081 |
+
window_size += 1
|
2082 |
+
|
2083 |
+
# Ensure polynomial order is less than window_size
|
2084 |
+
if poly_order >= window_size:
|
2085 |
+
poly_order = window_size - 1
|
2086 |
+
|
2087 |
+
try:
|
2088 |
+
from scipy.signal import savgol_filter
|
2089 |
+
return savgol_filter(data, window_size, poly_order)
|
2090 |
+
except ImportError:
|
2091 |
+
# Fallback to simple moving average if scipy not available
|
2092 |
+
return apply_financial_smoothing(data, "moving_average", window_size)
|
2093 |
+
|
2094 |
+
elif smoothing_type == "double_exponential":
|
2095 |
+
# Double Exponential Smoothing (Holt's method) - trend + level
|
2096 |
+
if len(data) < 3:
|
2097 |
+
return data
|
2098 |
+
|
2099 |
+
smoothed = np.zeros_like(data)
|
2100 |
+
trend = np.zeros_like(data)
|
2101 |
+
|
2102 |
+
# Initialize
|
2103 |
+
smoothed[0] = data[0]
|
2104 |
+
trend[0] = data[1] - data[0] if len(data) > 1 else 0
|
2105 |
+
|
2106 |
+
# Apply double exponential smoothing
|
2107 |
+
for i in range(1, len(data)):
|
2108 |
+
prev_smoothed = smoothed[i-1]
|
2109 |
+
prev_trend = trend[i-1]
|
2110 |
+
|
2111 |
+
smoothed[i] = alpha * data[i] + (1 - alpha) * (prev_smoothed + prev_trend)
|
2112 |
+
trend[i] = alpha * (smoothed[i] - prev_smoothed) + (1 - alpha) * prev_trend
|
2113 |
+
|
2114 |
+
return smoothed
|
2115 |
+
|
2116 |
+
elif smoothing_type == "triple_exponential":
|
2117 |
+
# Triple Exponential Smoothing (Holt-Winters) - trend + level + seasonality
|
2118 |
+
if len(data) < 6:
|
2119 |
+
return apply_financial_smoothing(data, "double_exponential", window_size, alpha)
|
2120 |
+
|
2121 |
+
# For simplicity, we'll use a seasonal period of 5 (common for financial data)
|
2122 |
+
season_period = min(5, len(data) // 2)
|
2123 |
+
|
2124 |
+
smoothed = np.zeros_like(data)
|
2125 |
+
trend = np.zeros_like(data)
|
2126 |
+
season = np.zeros_like(data)
|
2127 |
+
|
2128 |
+
# Initialize
|
2129 |
+
smoothed[0] = data[0]
|
2130 |
+
trend[0] = (data[season_period] - data[0]) / season_period if len(data) > season_period else 0
|
2131 |
+
|
2132 |
+
# Initialize seasonal components
|
2133 |
+
for i in range(season_period):
|
2134 |
+
season[i] = data[i] - smoothed[0]
|
2135 |
+
|
2136 |
+
# Apply triple exponential smoothing
|
2137 |
+
for i in range(1, len(data)):
|
2138 |
+
prev_smoothed = smoothed[i-1]
|
2139 |
+
prev_trend = trend[i-1]
|
2140 |
+
prev_season = season[(i-1) % season_period]
|
2141 |
+
|
2142 |
+
smoothed[i] = alpha * (data[i] - prev_season) + (1 - alpha) * (prev_smoothed + prev_trend)
|
2143 |
+
trend[i] = alpha * (smoothed[i] - prev_smoothed) + (1 - alpha) * prev_trend
|
2144 |
+
season[i % season_period] = alpha * (data[i] - smoothed[i]) + (1 - alpha) * prev_season
|
2145 |
+
|
2146 |
+
return smoothed
|
2147 |
+
|
2148 |
+
elif smoothing_type == "adaptive":
|
2149 |
+
# Adaptive smoothing based on volatility
|
2150 |
+
if len(data) < 5:
|
2151 |
+
return data
|
2152 |
+
|
2153 |
+
# Calculate rolling volatility
|
2154 |
+
returns = np.diff(data) / data[:-1]
|
2155 |
+
volatility = np.zeros_like(data)
|
2156 |
+
volatility[0] = np.std(returns) if len(returns) > 0 else 0.01
|
2157 |
+
|
2158 |
+
for i in range(1, len(data)):
|
2159 |
+
if i < 5:
|
2160 |
+
volatility[i] = np.std(returns[:i]) if i > 0 else 0.01
|
2161 |
+
else:
|
2162 |
+
volatility[i] = np.std(returns[i-5:i])
|
2163 |
+
|
2164 |
+
# Normalize volatility to smoothing factor
|
2165 |
+
vol_factor = np.clip(volatility / np.mean(volatility), 0.1, 0.9)
|
2166 |
+
adaptive_alpha = 1 - vol_factor # Higher volatility = less smoothing
|
2167 |
+
|
2168 |
+
# Apply adaptive exponential smoothing
|
2169 |
+
smoothed = np.zeros_like(data)
|
2170 |
+
smoothed[0] = data[0]
|
2171 |
+
|
2172 |
+
for i in range(1, len(data)):
|
2173 |
+
current_alpha = adaptive_alpha[i]
|
2174 |
+
smoothed[i] = current_alpha * data[i] + (1 - current_alpha) * smoothed[i-1]
|
2175 |
+
|
2176 |
+
return smoothed
|
2177 |
+
|
2178 |
+
else:
|
2179 |
+
# Default to exponential smoothing
|
2180 |
+
return apply_financial_smoothing(data, "exponential", window_size, alpha)
|
2181 |
+
|
2182 |
+
except Exception as e:
|
2183 |
+
print(f"Smoothing error: {str(e)}")
|
2184 |
+
return data
|
2185 |
+
|
2186 |
def create_interface():
|
2187 |
"""Create the Gradio interface with separate tabs for different timeframes"""
|
2188 |
with gr.Blocks(title="Advanced Stock Prediction Analysis") as demo:
|
|
|
2205 |
use_regime_detection = gr.Checkbox(label="Use Regime Detection", value=True)
|
2206 |
use_stress_testing = gr.Checkbox(label="Use Stress Testing", value=True)
|
2207 |
use_smoothing = gr.Checkbox(label="Use Smoothing", value=True)
|
2208 |
+
smoothing_type = gr.Dropdown(
|
2209 |
+
choices=["exponential", "moving_average", "kalman", "savitzky_golay",
|
2210 |
+
"double_exponential", "triple_exponential", "adaptive", "none"],
|
2211 |
+
label="Smoothing Type",
|
2212 |
+
value="exponential",
|
2213 |
+
info="""Smoothing algorithms:
|
2214 |
+
• Exponential: Trend following (default)
|
2215 |
+
• Moving Average: Noise reduction
|
2216 |
+
• Kalman: Adaptive smoothing
|
2217 |
+
• Savitzky-Golay: Preserves peaks/valleys
|
2218 |
+
• Double Exponential: Trend + level
|
2219 |
+
• Triple Exponential: Complex patterns
|
2220 |
+
• Adaptive: Volatility-based
|
2221 |
+
• None: No smoothing"""
|
2222 |
+
)
|
2223 |
+
smoothing_window = gr.Slider(
|
2224 |
+
minimum=3,
|
2225 |
+
maximum=21,
|
2226 |
+
value=5,
|
2227 |
+
step=1,
|
2228 |
+
label="Smoothing Window Size",
|
2229 |
+
info="Window size for moving average and Savitzky-Golay filters"
|
2230 |
+
)
|
2231 |
+
smoothing_alpha = gr.Slider(
|
2232 |
+
minimum=0.1,
|
2233 |
+
maximum=0.9,
|
2234 |
+
value=0.3,
|
2235 |
+
step=0.05,
|
2236 |
+
label="Smoothing Alpha",
|
2237 |
+
info="Smoothing factor for exponential methods (0.1-0.9)"
|
2238 |
+
)
|
2239 |
risk_free_rate = gr.Slider(
|
2240 |
minimum=0.0,
|
2241 |
maximum=0.1,
|
|
|
2306 |
value="chronos"
|
2307 |
)
|
2308 |
daily_predict_btn = gr.Button("Analyze Stock")
|
2309 |
+
gr.Markdown("""
|
2310 |
+
**Daily Analysis Features:**
|
2311 |
+
- **Extended Data Range**: Up to 10 years of historical data (3650 days)
|
2312 |
+
- **24/7 Availability**: Available regardless of market hours
|
2313 |
+
- **Auto-Adjusted Data**: Automatically adjusted for splits and dividends
|
2314 |
+
- **Comprehensive Financial Ratios**: P/E, PEG, Price-to-Book, Price-to-Sales, and more
|
2315 |
+
- **Advanced Risk Metrics**: Sharpe ratio, VaR, drawdown analysis, market correlation
|
2316 |
+
- **Market Regime Detection**: Identifies bull/bear/sideways market conditions
|
2317 |
+
- **Stress Testing**: Scenario analysis under various market conditions
|
2318 |
+
- **Ensemble Methods**: Combines multiple prediction models for improved accuracy
|
2319 |
+
- **Maximum prediction period**: 365 days
|
2320 |
+
- **Ideal for**: Medium to long-term investment analysis, portfolio management, and strategic planning
|
2321 |
+
- **Technical Indicators**: RSI, MACD, Bollinger Bands, moving averages optimized for daily data
|
2322 |
+
- **Volume Analysis**: Average daily volume, volume volatility, and liquidity metrics
|
2323 |
+
- **Sector Analysis**: Industry classification, market cap ranking, and sector-specific metrics
|
2324 |
+
""")
|
2325 |
|
2326 |
with gr.Column():
|
2327 |
daily_plot = gr.Plot(label="Analysis and Prediction")
|
|
|
2485 |
def analyze_stock(symbol, timeframe, prediction_days, lookback_days, strategy,
|
2486 |
use_ensemble, use_regime_detection, use_stress_testing,
|
2487 |
risk_free_rate, market_index, chronos_weight, technical_weight, statistical_weight,
|
2488 |
+
random_real_points, use_smoothing, smoothing_type, smoothing_window, smoothing_alpha):
|
2489 |
try:
|
2490 |
# Create ensemble weights
|
2491 |
ensemble_weights = {
|
|
|
2511 |
ensemble_weights=ensemble_weights,
|
2512 |
market_index=market_index,
|
2513 |
random_real_points=random_real_points,
|
2514 |
+
use_smoothing=use_smoothing,
|
2515 |
+
smoothing_type=smoothing_type,
|
2516 |
+
smoothing_window=smoothing_window,
|
2517 |
+
smoothing_alpha=smoothing_alpha
|
2518 |
)
|
2519 |
|
2520 |
# Get historical data for additional metrics
|
|
|
2597 |
# Daily analysis button click
|
2598 |
def daily_analysis(s: str, pd: int, ld: int, st: str, ue: bool, urd: bool, ust: bool,
|
2599 |
rfr: float, mi: str, cw: float, tw: float, sw: float,
|
2600 |
+
rrp: int, usm: bool, smt: str, sww: float, sa: float) -> Tuple[Dict, go.Figure, Dict, Dict, Dict, Dict, Dict, Dict, Dict]:
|
2601 |
"""
|
2602 |
Process daily timeframe stock analysis with advanced features.
|
2603 |
|
|
|
2634 |
rrp (int): Number of random real points to include in long-horizon context
|
2635 |
usm (bool): Use smoothing
|
2636 |
When True, applies smoothing to predictions to reduce noise and improve continuity
|
2637 |
+
smt (str): Smoothing type to use
|
2638 |
+
Options: "exponential", "moving_average", "kalman", "savitzky_golay", "double_exponential", "triple_exponential", "adaptive", "none"
|
2639 |
+
sww (float): Smoothing window size for moving average and Savitzky-Golay
|
2640 |
+
sa (float): Smoothing alpha for exponential methods (0.1-0.9)
|
2641 |
|
2642 |
Returns:
|
2643 |
Tuple[Dict, go.Figure, Dict, Dict, Dict, Dict, Dict, Dict, Dict]: Analysis results containing:
|
|
|
2657 |
|
2658 |
Example:
|
2659 |
>>> signals, plot, metrics, risk, sector, regime, stress, ensemble, advanced = daily_analysis(
|
2660 |
+
... "AAPL", 30, 365, "chronos", True, True, True, 0.02, "^GSPC", 0.6, 0.2, 0.2, 4, True, "exponential", 5, 0.3
|
2661 |
... )
|
2662 |
|
2663 |
Notes:
|
|
|
2668 |
- Risk-free rate is typically between 0.02-0.05 (2-5% annually)
|
2669 |
- Smoothing helps reduce prediction noise but may reduce responsiveness to sudden changes
|
2670 |
"""
|
2671 |
+
return analyze_stock(s, "1d", pd, ld, st, ue, urd, ust, rfr, mi, cw, tw, sw, rrp, usm, smt, sww, sa)
|
2672 |
|
2673 |
daily_predict_btn.click(
|
2674 |
fn=daily_analysis,
|
2675 |
inputs=[daily_symbol, daily_prediction_days, daily_lookback_days, daily_strategy,
|
2676 |
use_ensemble, use_regime_detection, use_stress_testing, risk_free_rate, market_index,
|
2677 |
chronos_weight, technical_weight, statistical_weight,
|
2678 |
+
random_real_points, use_smoothing, smoothing_type, smoothing_window, smoothing_alpha],
|
2679 |
outputs=[daily_signals, daily_plot, daily_metrics, daily_risk_metrics, daily_sector_metrics,
|
2680 |
daily_regime_metrics, daily_stress_results, daily_ensemble_metrics, daily_signals_advanced]
|
2681 |
)
|
|
|
2683 |
# Hourly analysis button click
|
2684 |
def hourly_analysis(s: str, pd: int, ld: int, st: str, ue: bool, urd: bool, ust: bool,
|
2685 |
rfr: float, mi: str, cw: float, tw: float, sw: float,
|
2686 |
+
rrp: int, usm: bool, smt: str, sww: float, sa: float) -> Tuple[Dict, go.Figure, Dict, Dict, Dict, Dict, Dict, Dict, Dict]:
|
2687 |
"""
|
2688 |
Process hourly timeframe stock analysis with advanced features.
|
2689 |
|
|
|
2720 |
rrp (int): Number of random real points to include in long-horizon context
|
2721 |
usm (bool): Use smoothing
|
2722 |
When True, applies smoothing to predictions to reduce noise and improve continuity
|
2723 |
+
smt (str): Smoothing type to use
|
2724 |
+
Options: "exponential", "moving_average", "kalman", "savitzky_golay", "double_exponential", "triple_exponential", "adaptive", "none"
|
2725 |
+
sww (float): Smoothing window size for moving average and Savitzky-Golay
|
2726 |
+
sa (float): Smoothing alpha for exponential methods (0.1-0.9)
|
2727 |
|
2728 |
Returns:
|
2729 |
Tuple[Dict, go.Figure, Dict, Dict, Dict, Dict, Dict, Dict, Dict]: Analysis results containing:
|
|
|
2743 |
|
2744 |
Example:
|
2745 |
>>> signals, plot, metrics, risk, sector, regime, stress, ensemble, advanced = hourly_analysis(
|
2746 |
+
... "AAPL", 3, 14, "chronos", True, True, True, 0.02, "^GSPC", 0.6, 0.2, 0.2, 4, True, "exponential", 5, 0.3
|
2747 |
... )
|
2748 |
|
2749 |
Notes:
|
|
|
2755 |
- Requires high-liquidity stocks for reliable hourly analysis
|
2756 |
- Smoothing helps reduce prediction noise but may reduce responsiveness to sudden changes
|
2757 |
"""
|
2758 |
+
return analyze_stock(s, "1h", pd, ld, st, ue, urd, ust, rfr, mi, cw, tw, sw, rrp, usm, smt, sww, sa)
|
2759 |
|
2760 |
hourly_predict_btn.click(
|
2761 |
fn=hourly_analysis,
|
2762 |
inputs=[hourly_symbol, hourly_prediction_days, hourly_lookback_days, hourly_strategy,
|
2763 |
use_ensemble, use_regime_detection, use_stress_testing, risk_free_rate, market_index,
|
2764 |
chronos_weight, technical_weight, statistical_weight,
|
2765 |
+
random_real_points, use_smoothing, smoothing_type, smoothing_window, smoothing_alpha],
|
2766 |
outputs=[hourly_signals, hourly_plot, hourly_metrics, hourly_risk_metrics, hourly_sector_metrics,
|
2767 |
hourly_regime_metrics, hourly_stress_results, hourly_ensemble_metrics, hourly_signals_advanced]
|
2768 |
)
|
|
|
2770 |
# 15-minute analysis button click
|
2771 |
def min15_analysis(s: str, pd: int, ld: int, st: str, ue: bool, urd: bool, ust: bool,
|
2772 |
rfr: float, mi: str, cw: float, tw: float, sw: float,
|
2773 |
+
rrp: int, usm: bool, smt: str, sww: float, sa: float) -> Tuple[Dict, go.Figure, Dict, Dict, Dict, Dict, Dict, Dict, Dict]:
|
2774 |
"""
|
2775 |
Process 15-minute timeframe stock analysis with advanced features.
|
2776 |
|
|
|
2807 |
rrp (int): Number of random real points to include in long-horizon context
|
2808 |
usm (bool): Use smoothing
|
2809 |
When True, applies smoothing to predictions to reduce noise and improve continuity
|
2810 |
+
smt (str): Smoothing type to use
|
2811 |
+
Options: "exponential", "moving_average", "kalman", "savitzky_golay", "double_exponential", "triple_exponential", "adaptive", "none"
|
2812 |
+
sww (float): Smoothing window size for moving average and Savitzky-Golay
|
2813 |
+
sa (float): Smoothing alpha for exponential methods (0.1-0.9)
|
2814 |
|
2815 |
Returns:
|
2816 |
Tuple[Dict, go.Figure, Dict, Dict, Dict, Dict, Dict, Dict, Dict]: Analysis results containing:
|
|
|
2830 |
|
2831 |
Example:
|
2832 |
>>> signals, plot, metrics, risk, sector, regime, stress, ensemble, advanced = min15_analysis(
|
2833 |
+
... "AAPL", 1, 3, "chronos", True, True, True, 0.02, "^GSPC", 0.6, 0.2, 0.2, 4, True, "exponential", 5, 0.3
|
2834 |
... )
|
2835 |
|
2836 |
Notes:
|
|
|
2844 |
- Best suited for highly liquid large-cap stocks with tight bid-ask spreads
|
2845 |
- Smoothing helps reduce prediction noise but may reduce responsiveness to sudden changes
|
2846 |
"""
|
2847 |
+
return analyze_stock(s, "15m", pd, ld, st, ue, urd, ust, rfr, mi, cw, tw, sw, rrp, usm, smt, sww, sa)
|
2848 |
|
2849 |
min15_predict_btn.click(
|
2850 |
fn=min15_analysis,
|
2851 |
inputs=[min15_symbol, min15_prediction_days, min15_lookback_days, min15_strategy,
|
2852 |
use_ensemble, use_regime_detection, use_stress_testing, risk_free_rate, market_index,
|
2853 |
chronos_weight, technical_weight, statistical_weight,
|
2854 |
+
random_real_points, use_smoothing, smoothing_type, smoothing_window, smoothing_alpha],
|
2855 |
outputs=[min15_signals, min15_plot, min15_metrics, min15_risk_metrics, min15_sector_metrics,
|
2856 |
min15_regime_metrics, min15_stress_results, min15_ensemble_metrics, min15_signals_advanced]
|
2857 |
)
|