Spaces:
Running
on
Zero
Running
on
Zero
attempt to solve gpu error
Browse files
app.py
CHANGED
@@ -356,100 +356,63 @@ def make_prediction(symbol: str, timeframe: str = "1d", prediction_days: int = 5
|
|
356 |
# Move the entire model and all its components to GPU
|
357 |
pipe.model = pipe.model.to(device)
|
358 |
|
359 |
-
#
|
360 |
for param in pipe.model.parameters():
|
361 |
param.data = param.data.to(device)
|
362 |
for buffer in pipe.model.buffers():
|
363 |
buffer.data = buffer.data.to(device)
|
364 |
|
365 |
-
# Move
|
366 |
for module in pipe.model.modules():
|
367 |
-
if hasattr(module, '
|
368 |
-
|
369 |
-
if buffer is not None and hasattr(buffer, 'to'):
|
370 |
-
module._buffers[name] = buffer.to(device)
|
371 |
-
if hasattr(module, 'register_parameter'):
|
372 |
-
for name, param in module._parameters.items():
|
373 |
-
if param is not None and hasattr(param, 'to'):
|
374 |
-
module._parameters[name] = param.to(device)
|
375 |
|
376 |
-
#
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
if
|
390 |
-
pipe
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
if isinstance(
|
404 |
-
setattr(pipe.
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
# Ensure all model parameters are on GPU
|
417 |
-
for name, param in pipe.model.named_parameters():
|
418 |
-
if param is not None and hasattr(param, 'to'):
|
419 |
-
param.data = param.data.to(device)
|
420 |
-
|
421 |
-
# Ensure all model attributes that might contain tensors are on GPU
|
422 |
-
for name, value in pipe.model.__dict__.items():
|
423 |
-
if isinstance(value, torch.Tensor) and hasattr(value, 'to'):
|
424 |
-
pipe.model.__dict__[name] = value.to(device)
|
425 |
-
|
426 |
-
# Move any additional model components to GPU
|
427 |
-
if hasattr(pipe.model, 'config'):
|
428 |
-
for key, value in pipe.model.config.__dict__.items():
|
429 |
-
if isinstance(value, torch.Tensor) and hasattr(value, 'to'):
|
430 |
-
setattr(pipe.model.config, key, value.to(device))
|
431 |
-
|
432 |
-
# Ensure all model components are in eval mode
|
433 |
-
pipe.model.eval()
|
434 |
-
|
435 |
-
# Move any additional tensors in the pipeline to GPU
|
436 |
-
for attr_name in dir(pipe):
|
437 |
-
attr = getattr(pipe, attr_name)
|
438 |
-
if isinstance(attr, torch.Tensor) and hasattr(attr, 'to'):
|
439 |
-
setattr(pipe, attr_name, attr.to(device))
|
440 |
-
|
441 |
-
# Ensure context is properly shaped and on GPU
|
442 |
-
if len(context.shape) == 1:
|
443 |
-
context = context.unsqueeze(0)
|
444 |
-
context = context.to(device)
|
445 |
|
446 |
-
#
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
)
|
453 |
|
454 |
if quantiles is None or mean is None:
|
455 |
raise ValueError("Chronos returned empty prediction")
|
|
|
356 |
# Move the entire model and all its components to GPU
|
357 |
pipe.model = pipe.model.to(device)
|
358 |
|
359 |
+
# Move all model parameters and buffers to GPU
|
360 |
for param in pipe.model.parameters():
|
361 |
param.data = param.data.to(device)
|
362 |
for buffer in pipe.model.buffers():
|
363 |
buffer.data = buffer.data.to(device)
|
364 |
|
365 |
+
# Move all model submodules to GPU
|
366 |
for module in pipe.model.modules():
|
367 |
+
if hasattr(module, 'to'):
|
368 |
+
module.to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
369 |
|
370 |
+
# Move all model attributes to GPU
|
371 |
+
for name, value in pipe.model.__dict__.items():
|
372 |
+
if isinstance(value, torch.Tensor):
|
373 |
+
pipe.model.__dict__[name] = value.to(device)
|
374 |
+
|
375 |
+
# Move all model config tensors to GPU
|
376 |
+
if hasattr(pipe.model, 'config'):
|
377 |
+
for key, value in pipe.model.config.__dict__.items():
|
378 |
+
if isinstance(value, torch.Tensor):
|
379 |
+
setattr(pipe.model.config, key, value.to(device))
|
380 |
+
|
381 |
+
# Move all pipeline tensors to GPU
|
382 |
+
for name, value in pipe.__dict__.items():
|
383 |
+
if isinstance(value, torch.Tensor):
|
384 |
+
setattr(pipe, name, value.to(device))
|
385 |
+
|
386 |
+
# Ensure all model states are on GPU
|
387 |
+
if hasattr(pipe.model, 'state_dict'):
|
388 |
+
state_dict = pipe.model.state_dict()
|
389 |
+
for key in state_dict:
|
390 |
+
if isinstance(state_dict[key], torch.Tensor):
|
391 |
+
state_dict[key] = state_dict[key].to(device)
|
392 |
+
pipe.model.load_state_dict(state_dict)
|
393 |
+
|
394 |
+
# Move any additional components to GPU
|
395 |
+
if hasattr(pipe, 'tokenizer'):
|
396 |
+
for name, value in pipe.tokenizer.__dict__.items():
|
397 |
+
if isinstance(value, torch.Tensor):
|
398 |
+
setattr(pipe.tokenizer, name, value.to(device))
|
399 |
+
|
400 |
+
# Ensure context is properly shaped and on GPU
|
401 |
+
if len(context.shape) == 1:
|
402 |
+
context = context.unsqueeze(0)
|
403 |
+
context = context.to(device)
|
404 |
+
|
405 |
+
# Ensure all inputs are on the same device
|
406 |
+
with torch.cuda.device(device):
|
407 |
+
# Force synchronization to ensure all tensors are on GPU
|
408 |
+
torch.cuda.synchronize()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
409 |
|
410 |
+
# Make prediction
|
411 |
+
quantiles, mean = pipe.predict_quantiles(
|
412 |
+
context=context,
|
413 |
+
prediction_length=actual_prediction_length,
|
414 |
+
quantile_levels=[0.1, 0.5, 0.9]
|
415 |
+
)
|
|
|
416 |
|
417 |
if quantiles is None or mean is None:
|
418 |
raise ValueError("Chronos returned empty prediction")
|