Tonic commited on
Commit
f444fd5
·
1 Parent(s): 46c1738

improve slider with smaller minimum days , add readme instructions for bankers

Browse files
Files changed (2) hide show
  1. README.md +64 -0
  2. app.py +2 -2
README.md CHANGED
@@ -167,3 +167,67 @@ Contributions are welcome! Please feel free to submit a Pull Request.
167
  ## License
168
 
169
  This project is licensed under the MIT License - see the LICENSE file for details.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
167
  ## License
168
 
169
  This project is licensed under the MIT License - see the LICENSE file for details.
170
+
171
+ ## Practical Example: Creating a 6-Month 8% Yield Structured Product
172
+
173
+ ### Scenario
174
+ A bank needs to create a structured product that offers an 8% yield over 6 months while maintaining profitability for the institution.
175
+
176
+ ### Step-by-Step Implementation
177
+
178
+ 1. **Initial Stock Screening**
179
+ - Use the application to analyze stocks with:
180
+ - High liquidity (for easy hedging)
181
+ - Stable volatility (for predictable risk)
182
+ - Strong technical indicators
183
+ - Positive long-term trends
184
+ - Recommended stocks: AAPL, MSFT, GOOGL (high liquidity, stable volatility)
185
+
186
+ 2. **Product Structure Design**
187
+ - Use the 6-month prediction horizon
188
+ - Analyze historical volatility for barrier setting
189
+ - Set participation rate based on risk metrics
190
+ - Structure: Reverse Convertible with 8% coupon
191
+
192
+ 3. **Risk Analysis**
193
+ - Use the application's risk metrics:
194
+ - Check maximum drawdown (should be < 15% for 6 months)
195
+ - Verify liquidity scores (should be > 80%)
196
+ - Analyze Sharpe ratio (should be > 1.5)
197
+
198
+ 4. **Business Case Example**
199
+
200
+ **Product Parameters:**
201
+ - Notional Amount: $1,000,000
202
+ - Term: 6 months
203
+ - Coupon: 8% p.a. (4% for 6 months)
204
+ - Underlying: AAPL
205
+ - Barrier: 85% of initial price
206
+ - Participation: 100%
207
+
208
+ **Revenue Structure:**
209
+ - Client receives: 8% p.a. (4% for 6 months)
210
+ - Bank's hedging cost: ~5% p.a.
211
+ - Bank's profit margin: ~3% p.a.
212
+ - Total client payout: $40,000 (4% of $1M)
213
+ - Bank's profit: $15,000 (1.5% of $1M)
214
+
215
+ 5. **Implementation Steps**
216
+ - Use the application's extended prediction horizon (180 days)
217
+ - Set technical indicators to monitor barrier risk
218
+ - Implement dynamic delta hedging based on predictions
219
+ - Monitor risk metrics daily using the application
220
+
221
+ 6. **Risk Management**
222
+ - Use the application's volatility predictions for dynamic hedging
223
+ - Monitor technical indicators for early warning signals
224
+ - Set up automated alerts for barrier proximity
225
+ - Regular rebalancing based on prediction updates
226
+
227
+ ### Key Success Factors
228
+ - Regular monitoring of prediction accuracy
229
+ - Dynamic adjustment of hedging strategy
230
+ - Clear communication of product risks to clients
231
+ - Proper documentation of all assumptions and methodologies
232
+
233
+ This example demonstrates how the application can be used to create profitable structured products while managing risk effectively. The bank can use this framework to create similar products with different underlying assets, terms, and yield targets.
app.py CHANGED
@@ -337,10 +337,10 @@ def create_interface():
337
  label="Days to Predict"
338
  )
339
  lookback_days = gr.Slider(
340
- minimum=365,
341
  maximum=3650, # 10 years of history
342
  value=365,
343
- step=30,
344
  label="Historical Lookback (Days)"
345
  )
346
  strategy = gr.Dropdown(
 
337
  label="Days to Predict"
338
  )
339
  lookback_days = gr.Slider(
340
+ minimum=1,
341
  maximum=3650, # 10 years of history
342
  value=365,
343
+ step=1,
344
  label="Historical Lookback (Days)"
345
  )
346
  strategy = gr.Dropdown(