Spaces:
Paused
Paused
add Pixtral
Browse files- .gitattributes +35 -0
- .gitignore +1 -0
- README.md +13 -0
- app.py +205 -0
- requirements.txt +7 -0
.gitattributes
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
notes.py
|
README.md
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Tonic's Pixtral
|
3 |
+
emoji: 📸🌬️
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: red
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 4.44.0
|
8 |
+
app_file: app.py
|
9 |
+
pinned: true
|
10 |
+
license: mit
|
11 |
+
---
|
12 |
+
|
13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
from vllm import LLM, SamplingParams
|
4 |
+
from PIL import Image
|
5 |
+
from io import BytesIO
|
6 |
+
import base64
|
7 |
+
import requests
|
8 |
+
from huggingface_hub import login
|
9 |
+
import torch
|
10 |
+
import torch.nn.functional as F
|
11 |
+
import spaces
|
12 |
+
import json
|
13 |
+
import gradio as gr
|
14 |
+
from huggingface_hub import snapshot_download
|
15 |
+
import os
|
16 |
+
# from loadimg import load_img
|
17 |
+
import traceback
|
18 |
+
|
19 |
+
login(os.environ.get("HUGGINGFACE_TOKEN"))
|
20 |
+
|
21 |
+
repo_id = "mistralai/Pixtral-12B-2409"
|
22 |
+
sampling_params = SamplingParams(max_tokens=8192, temperature=0.7)
|
23 |
+
max_tokens_per_img = 4096
|
24 |
+
max_img_per_msg = 5
|
25 |
+
|
26 |
+
|
27 |
+
title = "# **WIP / DEMO** 🙋🏻♂️Welcome to Tonic's Pixtral Model Demo"
|
28 |
+
description = """
|
29 |
+
### Join us :
|
30 |
+
🌟TeamTonic🌟 is always making cool demos! Join our active builder's 🛠️community 👻 [![Join us on Discord](https://img.shields.io/discord/1109943800132010065?label=Discord&logo=discord&style=flat-square)](https://discord.gg/qdfnvSPcqP) On 🤗Huggingface:[MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to🌟 [Build Tonic](https://git.tonic-ai.com/contribute)🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗
|
31 |
+
"""
|
32 |
+
HUGGINGFACE_TOKEN = os.environ.get("HUGGINGFACE_TOKEN")
|
33 |
+
model_path = snapshot_download(repo_id="mistralai/Pixtral-12B-2409", token=HUGGINGFACE_TOKEN)
|
34 |
+
|
35 |
+
with open(f'{model_path}/params.json', 'r') as f:
|
36 |
+
params = json.load(f)
|
37 |
+
|
38 |
+
with open(f'{model_path}/tekken.json', 'r') as f:
|
39 |
+
tokenizer_config = json.load(f)
|
40 |
+
|
41 |
+
@spaces.GPU()
|
42 |
+
def initialize_llm():
|
43 |
+
try:
|
44 |
+
llm = LLM(
|
45 |
+
model=repo_id,
|
46 |
+
tokenizer_mode="mistral",
|
47 |
+
max_model_len=65536,
|
48 |
+
max_num_batched_tokens=max_img_per_msg * max_tokens_per_img,
|
49 |
+
limit_mm_per_prompt={"image": max_img_per_msg}
|
50 |
+
)
|
51 |
+
return llm
|
52 |
+
except Exception as e:
|
53 |
+
print("LLM initialization failed:", e)
|
54 |
+
return None
|
55 |
+
|
56 |
+
sampling_params = SamplingParams(max_tokens=8192)
|
57 |
+
llm = initialize_llm()
|
58 |
+
|
59 |
+
def encode_image(image: Image.Image, image_format="PNG") -> str:
|
60 |
+
im_file = BytesIO()
|
61 |
+
image.save(im_file, format=image_format)
|
62 |
+
im_bytes = im_file.getvalue()
|
63 |
+
im_64 = base64.b64encode(im_bytes).decode("utf-8")
|
64 |
+
return im_64
|
65 |
+
|
66 |
+
@spaces.GPU()
|
67 |
+
def infer(image_url, prompt, progress=gr.Progress(track_tqdm=True)):
|
68 |
+
if llm is None:
|
69 |
+
return "Error: LLM initialization failed. Please try again later."
|
70 |
+
|
71 |
+
try:
|
72 |
+
image = Image.open(BytesIO(requests.get(image_url).content))
|
73 |
+
image = image.resize((3844, 2408))
|
74 |
+
new_image_url = f"data:image/png;base64,{encode_image(image, image_format='PNG')}"
|
75 |
+
|
76 |
+
messages = [
|
77 |
+
{
|
78 |
+
"role": "user",
|
79 |
+
"content": [{"type": "text", "text": prompt}, {"type": "image_url", "image_url": {"url": new_image_url}}]
|
80 |
+
},
|
81 |
+
]
|
82 |
+
|
83 |
+
outputs = llm.chat(messages, sampling_params=sampling_params)
|
84 |
+
|
85 |
+
return outputs[0].outputs[0].text
|
86 |
+
except Exception as e:
|
87 |
+
return f"Error during inference: {e}"
|
88 |
+
|
89 |
+
@spaces.GPU()
|
90 |
+
def compare_images(image1_url, image2_url, prompt, progress=gr.Progress(track_tqdm=True)):
|
91 |
+
if llm is None:
|
92 |
+
return "Error: LLM initialization failed. Please try again later."
|
93 |
+
|
94 |
+
try:
|
95 |
+
image1 = Image.open(BytesIO(requests.get(image1_url).content))
|
96 |
+
image2 = Image.open(BytesIO(requests.get(image2_url).content))
|
97 |
+
image1 = image1.resize((3844, 2408))
|
98 |
+
image2 = image2.resize((3844, 2408))
|
99 |
+
new_image1_url = f"data:image/png;base64,{encode_image(image1, image_format='PNG')}"
|
100 |
+
new_image2_url = f"data:image/png;base64,{encode_image(image2, image_format='PNG')}"
|
101 |
+
|
102 |
+
messages = [
|
103 |
+
{
|
104 |
+
"role": "user",
|
105 |
+
"content": [
|
106 |
+
{"type": "text", "text": prompt},
|
107 |
+
{"type": "image_url", "image_url": {"url": new_image1_url}},
|
108 |
+
{"type": "image_url", "image_url": {"url": new_image2_url}}
|
109 |
+
]
|
110 |
+
},
|
111 |
+
]
|
112 |
+
|
113 |
+
outputs = llm.chat(messages, sampling_params=sampling_params)
|
114 |
+
|
115 |
+
return outputs[0].outputs[0].text
|
116 |
+
except Exception as e:
|
117 |
+
return f"Error during image comparison: {e}"
|
118 |
+
|
119 |
+
@spaces.GPU()
|
120 |
+
def calculate_image_similarity(image1_url, image2_url):
|
121 |
+
if llm is None:
|
122 |
+
return "Error: LLM initialization failed. Please try again later."
|
123 |
+
|
124 |
+
try:
|
125 |
+
image1 = Image.open(BytesIO(requests.get(image1_url).content)).convert('RGB')
|
126 |
+
image2 = Image.open(BytesIO(requests.get(image2_url).content)).convert('RGB')
|
127 |
+
image1 = image1.resize((224, 224)) # Resize to match model input size
|
128 |
+
image2 = image2.resize((224, 224))
|
129 |
+
|
130 |
+
image1_tensor = torch.tensor(list(image1.getdata())).view(1, 3, 224, 224).float() / 255.0
|
131 |
+
image2_tensor = torch.tensor(list(image2.getdata())).view(1, 3, 224, 224).float() / 255.0
|
132 |
+
|
133 |
+
with torch.no_grad():
|
134 |
+
embedding1 = llm.model.vision_encoder([image1_tensor])
|
135 |
+
embedding2 = llm.model.vision_encoder([image2_tensor])
|
136 |
+
|
137 |
+
similarity = F.cosine_similarity(embedding1.mean(dim=0), embedding2.mean(dim=0), dim=0).item()
|
138 |
+
|
139 |
+
return similarity
|
140 |
+
except Exception as e:
|
141 |
+
return f"Error during image similarity calculation: {e}"
|
142 |
+
|
143 |
+
with gr.Blocks() as demo:
|
144 |
+
gr.Markdown(title)
|
145 |
+
gr.Markdown("## How it works")
|
146 |
+
gr.Markdown("1. The image is processed by a Vision Encoder using 2D ROPE (Rotary Position Embedding).")
|
147 |
+
gr.Markdown("2. The encoder uses SiLU activation in its feed-forward layers.")
|
148 |
+
gr.Markdown("3. The encoded image is used for text generation or similarity comparison.")
|
149 |
+
gr.Markdown(
|
150 |
+
"""
|
151 |
+
## How to use
|
152 |
+
1. For Image-to-Text Generation:
|
153 |
+
- Enter the URL of an image
|
154 |
+
- Provide a prompt describing what you want to know about the image
|
155 |
+
- Click "Generate" to get the model's response
|
156 |
+
2. For Image Comparison:
|
157 |
+
- Enter URLs for two images you want to compare
|
158 |
+
- Provide a prompt asking about the comparison
|
159 |
+
- Click "Compare" to get the model's analysis
|
160 |
+
3. For Image Similarity:
|
161 |
+
- Enter URLs for two images you want to compare
|
162 |
+
- Click "Calculate Similarity" to get a similarity score between 0 and 1
|
163 |
+
"""
|
164 |
+
)
|
165 |
+
gr.Markdown(description)
|
166 |
+
with gr.Tabs():
|
167 |
+
with gr.TabItem("Image-to-Text Generation"):
|
168 |
+
with gr.Row():
|
169 |
+
image_url = gr.Text(label="Image URL")
|
170 |
+
prompt = gr.Text(label="Prompt")
|
171 |
+
generate_button = gr.Button("Generate")
|
172 |
+
output = gr.Text(label="Generated Text")
|
173 |
+
|
174 |
+
generate_button.click(infer, inputs=[image_url, prompt], outputs=output)
|
175 |
+
|
176 |
+
with gr.TabItem("Image Comparison"):
|
177 |
+
with gr.Row():
|
178 |
+
image1_url = gr.Text(label="Image 1 URL")
|
179 |
+
image2_url = gr.Text(label="Image 2 URL")
|
180 |
+
comparison_prompt = gr.Text(label="Comparison Prompt")
|
181 |
+
compare_button = gr.Button("Compare")
|
182 |
+
comparison_output = gr.Text(label="Comparison Result")
|
183 |
+
|
184 |
+
compare_button.click(compare_images, inputs=[image1_url, image2_url, comparison_prompt], outputs=comparison_output)
|
185 |
+
|
186 |
+
with gr.TabItem("Image Similarity"):
|
187 |
+
with gr.Row():
|
188 |
+
sim_image1_url = gr.Text(label="Image 1 URL")
|
189 |
+
sim_image2_url = gr.Text(label="Image 2 URL")
|
190 |
+
similarity_button = gr.Button("Calculate Similarity")
|
191 |
+
similarity_output = gr.Number(label="Similarity Score")
|
192 |
+
|
193 |
+
similarity_button.click(calculate_image_similarity, inputs=[sim_image1_url, sim_image2_url], outputs=similarity_output)
|
194 |
+
gr.Markdown("## Model Details")
|
195 |
+
gr.Markdown(f"- Model Dimension: {params['dim']}")
|
196 |
+
gr.Markdown(f"- Number of Layers: {params['n_layers']}")
|
197 |
+
gr.Markdown(f"- Number of Attention Heads: {params['n_heads']}")
|
198 |
+
gr.Markdown(f"- Vision Encoder Hidden Size: {params['vision_encoder']['hidden_size']}")
|
199 |
+
gr.Markdown(f"- Number of Vision Encoder Layers: {params['vision_encoder']['num_hidden_layers']}")
|
200 |
+
gr.Markdown(f"- Number of Vision Encoder Attention Heads: {params['vision_encoder']['num_attention_heads']}")
|
201 |
+
gr.Markdown(f"- Image Size: {params['vision_encoder']['image_size']}x{params['vision_encoder']['image_size']}")
|
202 |
+
gr.Markdown(f"- Patch Size: {params['vision_encoder']['patch_size']}x{params['vision_encoder']['patch_size']}")
|
203 |
+
|
204 |
+
if __name__ == "__main__":
|
205 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch>=1.9.0
|
2 |
+
safetensors>=0.3.1
|
3 |
+
Pillow>=9.0.0
|
4 |
+
numpy>=1.21.0
|
5 |
+
mistral_common
|
6 |
+
loadimg
|
7 |
+
vllm==0.6.1
|