Tonic commited on
Commit
c6cb576
1 Parent(s): 648469c

add Pixtral

Browse files
Files changed (5) hide show
  1. .gitattributes +35 -0
  2. .gitignore +1 -0
  3. README.md +13 -0
  4. app.py +205 -0
  5. requirements.txt +7 -0
.gitattributes ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1 @@
 
 
1
+ notes.py
README.md ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: Tonic's Pixtral
3
+ emoji: 📸🌬️
4
+ colorFrom: blue
5
+ colorTo: red
6
+ sdk: gradio
7
+ sdk_version: 4.44.0
8
+ app_file: app.py
9
+ pinned: true
10
+ license: mit
11
+ ---
12
+
13
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py ADDED
@@ -0,0 +1,205 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import gradio as gr
3
+ from vllm import LLM, SamplingParams
4
+ from PIL import Image
5
+ from io import BytesIO
6
+ import base64
7
+ import requests
8
+ from huggingface_hub import login
9
+ import torch
10
+ import torch.nn.functional as F
11
+ import spaces
12
+ import json
13
+ import gradio as gr
14
+ from huggingface_hub import snapshot_download
15
+ import os
16
+ # from loadimg import load_img
17
+ import traceback
18
+
19
+ login(os.environ.get("HUGGINGFACE_TOKEN"))
20
+
21
+ repo_id = "mistralai/Pixtral-12B-2409"
22
+ sampling_params = SamplingParams(max_tokens=8192, temperature=0.7)
23
+ max_tokens_per_img = 4096
24
+ max_img_per_msg = 5
25
+
26
+
27
+ title = "# **WIP / DEMO** 🙋🏻‍♂️Welcome to Tonic's Pixtral Model Demo"
28
+ description = """
29
+ ### Join us :
30
+ 🌟TeamTonic🌟 is always making cool demos! Join our active builder's 🛠️community 👻 [![Join us on Discord](https://img.shields.io/discord/1109943800132010065?label=Discord&logo=discord&style=flat-square)](https://discord.gg/qdfnvSPcqP) On 🤗Huggingface:[MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to🌟 [Build Tonic](https://git.tonic-ai.com/contribute)🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗
31
+ """
32
+ HUGGINGFACE_TOKEN = os.environ.get("HUGGINGFACE_TOKEN")
33
+ model_path = snapshot_download(repo_id="mistralai/Pixtral-12B-2409", token=HUGGINGFACE_TOKEN)
34
+
35
+ with open(f'{model_path}/params.json', 'r') as f:
36
+ params = json.load(f)
37
+
38
+ with open(f'{model_path}/tekken.json', 'r') as f:
39
+ tokenizer_config = json.load(f)
40
+
41
+ @spaces.GPU()
42
+ def initialize_llm():
43
+ try:
44
+ llm = LLM(
45
+ model=repo_id,
46
+ tokenizer_mode="mistral",
47
+ max_model_len=65536,
48
+ max_num_batched_tokens=max_img_per_msg * max_tokens_per_img,
49
+ limit_mm_per_prompt={"image": max_img_per_msg}
50
+ )
51
+ return llm
52
+ except Exception as e:
53
+ print("LLM initialization failed:", e)
54
+ return None
55
+
56
+ sampling_params = SamplingParams(max_tokens=8192)
57
+ llm = initialize_llm()
58
+
59
+ def encode_image(image: Image.Image, image_format="PNG") -> str:
60
+ im_file = BytesIO()
61
+ image.save(im_file, format=image_format)
62
+ im_bytes = im_file.getvalue()
63
+ im_64 = base64.b64encode(im_bytes).decode("utf-8")
64
+ return im_64
65
+
66
+ @spaces.GPU()
67
+ def infer(image_url, prompt, progress=gr.Progress(track_tqdm=True)):
68
+ if llm is None:
69
+ return "Error: LLM initialization failed. Please try again later."
70
+
71
+ try:
72
+ image = Image.open(BytesIO(requests.get(image_url).content))
73
+ image = image.resize((3844, 2408))
74
+ new_image_url = f"data:image/png;base64,{encode_image(image, image_format='PNG')}"
75
+
76
+ messages = [
77
+ {
78
+ "role": "user",
79
+ "content": [{"type": "text", "text": prompt}, {"type": "image_url", "image_url": {"url": new_image_url}}]
80
+ },
81
+ ]
82
+
83
+ outputs = llm.chat(messages, sampling_params=sampling_params)
84
+
85
+ return outputs[0].outputs[0].text
86
+ except Exception as e:
87
+ return f"Error during inference: {e}"
88
+
89
+ @spaces.GPU()
90
+ def compare_images(image1_url, image2_url, prompt, progress=gr.Progress(track_tqdm=True)):
91
+ if llm is None:
92
+ return "Error: LLM initialization failed. Please try again later."
93
+
94
+ try:
95
+ image1 = Image.open(BytesIO(requests.get(image1_url).content))
96
+ image2 = Image.open(BytesIO(requests.get(image2_url).content))
97
+ image1 = image1.resize((3844, 2408))
98
+ image2 = image2.resize((3844, 2408))
99
+ new_image1_url = f"data:image/png;base64,{encode_image(image1, image_format='PNG')}"
100
+ new_image2_url = f"data:image/png;base64,{encode_image(image2, image_format='PNG')}"
101
+
102
+ messages = [
103
+ {
104
+ "role": "user",
105
+ "content": [
106
+ {"type": "text", "text": prompt},
107
+ {"type": "image_url", "image_url": {"url": new_image1_url}},
108
+ {"type": "image_url", "image_url": {"url": new_image2_url}}
109
+ ]
110
+ },
111
+ ]
112
+
113
+ outputs = llm.chat(messages, sampling_params=sampling_params)
114
+
115
+ return outputs[0].outputs[0].text
116
+ except Exception as e:
117
+ return f"Error during image comparison: {e}"
118
+
119
+ @spaces.GPU()
120
+ def calculate_image_similarity(image1_url, image2_url):
121
+ if llm is None:
122
+ return "Error: LLM initialization failed. Please try again later."
123
+
124
+ try:
125
+ image1 = Image.open(BytesIO(requests.get(image1_url).content)).convert('RGB')
126
+ image2 = Image.open(BytesIO(requests.get(image2_url).content)).convert('RGB')
127
+ image1 = image1.resize((224, 224)) # Resize to match model input size
128
+ image2 = image2.resize((224, 224))
129
+
130
+ image1_tensor = torch.tensor(list(image1.getdata())).view(1, 3, 224, 224).float() / 255.0
131
+ image2_tensor = torch.tensor(list(image2.getdata())).view(1, 3, 224, 224).float() / 255.0
132
+
133
+ with torch.no_grad():
134
+ embedding1 = llm.model.vision_encoder([image1_tensor])
135
+ embedding2 = llm.model.vision_encoder([image2_tensor])
136
+
137
+ similarity = F.cosine_similarity(embedding1.mean(dim=0), embedding2.mean(dim=0), dim=0).item()
138
+
139
+ return similarity
140
+ except Exception as e:
141
+ return f"Error during image similarity calculation: {e}"
142
+
143
+ with gr.Blocks() as demo:
144
+ gr.Markdown(title)
145
+ gr.Markdown("## How it works")
146
+ gr.Markdown("1. The image is processed by a Vision Encoder using 2D ROPE (Rotary Position Embedding).")
147
+ gr.Markdown("2. The encoder uses SiLU activation in its feed-forward layers.")
148
+ gr.Markdown("3. The encoded image is used for text generation or similarity comparison.")
149
+ gr.Markdown(
150
+ """
151
+ ## How to use
152
+ 1. For Image-to-Text Generation:
153
+ - Enter the URL of an image
154
+ - Provide a prompt describing what you want to know about the image
155
+ - Click "Generate" to get the model's response
156
+ 2. For Image Comparison:
157
+ - Enter URLs for two images you want to compare
158
+ - Provide a prompt asking about the comparison
159
+ - Click "Compare" to get the model's analysis
160
+ 3. For Image Similarity:
161
+ - Enter URLs for two images you want to compare
162
+ - Click "Calculate Similarity" to get a similarity score between 0 and 1
163
+ """
164
+ )
165
+ gr.Markdown(description)
166
+ with gr.Tabs():
167
+ with gr.TabItem("Image-to-Text Generation"):
168
+ with gr.Row():
169
+ image_url = gr.Text(label="Image URL")
170
+ prompt = gr.Text(label="Prompt")
171
+ generate_button = gr.Button("Generate")
172
+ output = gr.Text(label="Generated Text")
173
+
174
+ generate_button.click(infer, inputs=[image_url, prompt], outputs=output)
175
+
176
+ with gr.TabItem("Image Comparison"):
177
+ with gr.Row():
178
+ image1_url = gr.Text(label="Image 1 URL")
179
+ image2_url = gr.Text(label="Image 2 URL")
180
+ comparison_prompt = gr.Text(label="Comparison Prompt")
181
+ compare_button = gr.Button("Compare")
182
+ comparison_output = gr.Text(label="Comparison Result")
183
+
184
+ compare_button.click(compare_images, inputs=[image1_url, image2_url, comparison_prompt], outputs=comparison_output)
185
+
186
+ with gr.TabItem("Image Similarity"):
187
+ with gr.Row():
188
+ sim_image1_url = gr.Text(label="Image 1 URL")
189
+ sim_image2_url = gr.Text(label="Image 2 URL")
190
+ similarity_button = gr.Button("Calculate Similarity")
191
+ similarity_output = gr.Number(label="Similarity Score")
192
+
193
+ similarity_button.click(calculate_image_similarity, inputs=[sim_image1_url, sim_image2_url], outputs=similarity_output)
194
+ gr.Markdown("## Model Details")
195
+ gr.Markdown(f"- Model Dimension: {params['dim']}")
196
+ gr.Markdown(f"- Number of Layers: {params['n_layers']}")
197
+ gr.Markdown(f"- Number of Attention Heads: {params['n_heads']}")
198
+ gr.Markdown(f"- Vision Encoder Hidden Size: {params['vision_encoder']['hidden_size']}")
199
+ gr.Markdown(f"- Number of Vision Encoder Layers: {params['vision_encoder']['num_hidden_layers']}")
200
+ gr.Markdown(f"- Number of Vision Encoder Attention Heads: {params['vision_encoder']['num_attention_heads']}")
201
+ gr.Markdown(f"- Image Size: {params['vision_encoder']['image_size']}x{params['vision_encoder']['image_size']}")
202
+ gr.Markdown(f"- Patch Size: {params['vision_encoder']['patch_size']}x{params['vision_encoder']['patch_size']}")
203
+
204
+ if __name__ == "__main__":
205
+ demo.launch()
requirements.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ torch>=1.9.0
2
+ safetensors>=0.3.1
3
+ Pillow>=9.0.0
4
+ numpy>=1.21.0
5
+ mistral_common
6
+ loadimg
7
+ vllm==0.6.1