import gradio as gr import torch from transformers import AutoModel, AutoTokenizer, AutoConfig import os import base64 import io from PIL import Image import numpy as np import uuid import cv2 import re from globe import title, description, modelinfor, joinus, howto model_name = 'ucaslcl/GOT-OCR2_0' tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) config = AutoConfig.from_pretrained(model_name, trust_remote_code=True) model = AutoModel.from_pretrained(model_name, trust_remote_code=True, low_cpu_mem_usage=True, device_map='cuda', use_safetensors=True, pad_token_id=tokenizer.eos_token_id) model = model.eval().cuda() model.config.pad_token_id = tokenizer.eos_token_id UPLOAD_FOLDER = "./uploads" RESULTS_FOLDER = "./results" for folder in [UPLOAD_FOLDER, RESULTS_FOLDER]: if not os.path.exists(folder): os.makedirs(folder) def image_to_base64(image): buffered = io.BytesIO() image.save(buffered, format="PNG") return base64.b64encode(buffered.getvalue()).decode() def process_image(image, ocr_type, ocr_box=None, ocr_color=None): unique_id = str(uuid.uuid4()) image_path = os.path.join(UPLOAD_FOLDER, f"{unique_id}.png") result_path = os.path.join(RESULTS_FOLDER, f"{unique_id}.html") try: if isinstance(image, dict): composite_image = image.get("composite") if composite_image is not None: if isinstance(composite_image, np.ndarray): cv2.imwrite(image_path, cv2.cvtColor(composite_image, cv2.COLOR_RGB2BGR)) elif isinstance(composite_image, Image.Image): composite_image.save(image_path) else: return "Error: Unsupported image format from ImageEditor", None else: return "Error: No composite image found in ImageEditor output", None else: return "Error: Unsupported image format", None if ocr_color: res = model.chat(tokenizer, image_path, ocr_type=ocr_type, ocr_color=ocr_color, render=True, save_render_file=result_path) else: res = model.chat(tokenizer, image_path, ocr_type=ocr_type, ocr_box=ocr_box, render=True, save_render_file=result_path) if os.path.exists(result_path): with open(result_path, 'r') as f: html_content = f.read() return res, html_content else: return res, None except Exception as e: return f"Error: {str(e)}", None finally: if os.path.exists(image_path): os.remove(image_path) def parse_latex_output(res): lines = re.split(r'(\$\$.*?\$\$)', res, flags=re.DOTALL) parsed_lines = [] in_latex = False latex_buffer = [] for line in lines: if line == '\n': if in_latex: latex_buffer.append(line) else: parsed_lines.append(line) continue line = line.strip() latex_patterns = [r'\{', r'\}', r'\[', r'\]', r'\\', r'\$', r'_', r'^', r'"'] contains_latex = any(re.search(pattern, line) for pattern in latex_patterns) if contains_latex: if not in_latex: in_latex = True latex_buffer = ['$$'] latex_buffer.append(line) else: if in_latex: latex_buffer.append('$$') parsed_lines.extend(latex_buffer) in_latex = False latex_buffer = [] parsed_lines.append(line) if in_latex: latex_buffer.append('$$') parsed_lines.extend(latex_buffer) return '$$\\$$\n'.join(parsed_lines) def ocr_demo(image, ocr_type, ocr_color): res, html_content = process_image(image, ocr_type, ocr_color=ocr_color) if isinstance(res, str) and res.startswith("Error:"): return res, None res = res.replace("\\title", "\\title ") formatted_res = parse_latex_output(res) if html_content: encoded_html = base64.b64encode(html_content.encode('utf-8')).decode('utf-8') iframe_src = f"data:text/html;base64,{encoded_html}" iframe = f'' download_link = f'Download Full Result' return formatted_res, f"{iframe}
{download_link}" return formatted_res, None with gr.Blocks(theme=gr.themes.Base()) as demo: with gr.Row(): gr.Markdown(title) with gr.Row(): with gr.Column(scale=1): with gr.Group(): gr.Markdown(description) with gr.Column(scale=1): with gr.Group(): gr.Markdown(modelinfor) gr.Markdown(joinus) with gr.Row(): with gr.Accordion("How to use 🫴🏻👁GOT OCR", open=True): with gr.Row(): gr.Image("res/image/howto_1.png", label="Select the Following Parameters") gr.Image("res/image/howto_2.png", label="Click on Paintbrush in the Image Editor") gr.Image("res/image/howto_3.png", label="Select your Brush Color (Red)") gr.Image("res/image/howto_4.png", label="Make a Box Around The Text") with gr.Row(): with gr.Group(): gr.Markdown(howto) with gr.Row(): with gr.Column(scale=1): image_editor = gr.ImageEditor(label="Image Editor", type="pil", height=800) ocr_type_dropdown = gr.Dropdown( choices=["ocr", "format"], label="OCR Type", value="ocr" ) ocr_color_dropdown = gr.Dropdown( choices=["red", "green", "blue"], label="OCR Color", value="red" ) submit_button = gr.Button("Process") with gr.Column(scale=1): output_markdown = gr.Markdown(label="🫴🏻👁GOT-OCR") output_html = gr.HTML(label="🫴🏻👁GOT-OCR") submit_button.click( ocr_demo, inputs=[image_editor, ocr_type_dropdown, ocr_color_dropdown], outputs=[output_markdown, output_html] ) if __name__ == "__main__": demo.launch()