Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -7,15 +7,10 @@ import gradio as gr
|
|
7 |
import sentencepiece
|
8 |
|
9 |
title = "Welcome to Tonic's 🐋🐳Orca-2-13B (in 8bit)!"
|
10 |
-
description = "You can use [🐋🐳microsoft/Orca-2-13b](https://huggingface.co/microsoft/Orca-2-13b) via API using Gradio by scrolling down and clicking Use 'Via API' or privately by [cloning this space on huggingface](https://huggingface.co/spaces/Tonic1/TonicsOrca2?duplicate=true) . [Join my active builders' server on discord](https://discord.gg/VqTxc76K3u). Big thanks to the HuggingFace Organisation for the Community Grant."
|
11 |
|
12 |
-
# os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:50'
|
13 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
14 |
model_name = "microsoft/Orca-2-13b"
|
15 |
-
# offload_folder = './model_weights'
|
16 |
-
|
17 |
-
# if not os.path.exists(offload_folder):
|
18 |
-
# os.makedirs(offload_folder)
|
19 |
|
20 |
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
|
21 |
model = transformers.AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", load_in_8bit=True)
|
@@ -25,9 +20,26 @@ class OrcaChatBot:
|
|
25 |
self.model = model
|
26 |
self.tokenizer = tokenizer
|
27 |
self.system_message = system_message
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
def predict(self, user_message, temperature=0.4, max_new_tokens=70, top_p=0.99, repetition_penalty=1.9):
|
30 |
-
|
|
|
31 |
inputs = self.tokenizer(prompt, return_tensors='pt', add_special_tokens=False)
|
32 |
input_ids = inputs["input_ids"].to(self.model.device)
|
33 |
|
@@ -38,13 +50,13 @@ class OrcaChatBot:
|
|
38 |
top_p=top_p,
|
39 |
repetition_penalty=repetition_penalty,
|
40 |
pad_token_id=self.tokenizer.eos_token_id,
|
41 |
-
do_sample=True
|
42 |
-
|
43 |
|
44 |
response = self.tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
45 |
-
|
46 |
return response
|
47 |
-
|
48 |
Orca_bot = OrcaChatBot(model, tokenizer)
|
49 |
|
50 |
def gradio_predict(user_message, system_message, max_new_tokens, temperature, top_p, repetition_penalty):
|
@@ -58,7 +70,7 @@ iface = gr.Interface(
|
|
58 |
inputs=[
|
59 |
gr.Textbox(label="Your Message", type="text", lines=3),
|
60 |
gr.Textbox(label="Introduce a Character Here or Set a Scene (system prompt)", type="text", lines=2),
|
61 |
-
gr.Slider(label="Max new tokens", value=
|
62 |
gr.Slider(label="Temperature", value=0.1, minimum=0.05, maximum=1.0, step=0.05),
|
63 |
gr.Slider(label="Top-p (nucleus sampling)", value=0.90, minimum=0.01, maximum=0.99, step=0.05),
|
64 |
gr.Slider(label="Repetition penalty", value=1.9, minimum=1.0, maximum=2.0, step=0.05)
|
|
|
7 |
import sentencepiece
|
8 |
|
9 |
title = "Welcome to Tonic's 🐋🐳Orca-2-13B (in 8bit)!"
|
10 |
+
description = "You can use [🐋🐳microsoft/Orca-2-13b](https://huggingface.co/microsoft/Orca-2-13b) via API using Gradio by scrolling down and clicking Use 'Via API' or privately by [cloning this space on huggingface](https://huggingface.co/spaces/Tonic1/TonicsOrca2?duplicate=true) . [Join my active builders' server on discord](https://discord.gg/VqTxc76K3u). Let's build together! Big thanks to the HuggingFace Organisation for the Community Grant."
|
11 |
|
|
|
12 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
13 |
model_name = "microsoft/Orca-2-13b"
|
|
|
|
|
|
|
|
|
14 |
|
15 |
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
|
16 |
model = transformers.AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", load_in_8bit=True)
|
|
|
20 |
self.model = model
|
21 |
self.tokenizer = tokenizer
|
22 |
self.system_message = system_message
|
23 |
+
self.conversation_history = []
|
24 |
+
|
25 |
+
def update_conversation_history(self, user_message, assistant_message):
|
26 |
+
self.conversation_history.append(("user", user_message))
|
27 |
+
self.conversation_history.append(("assistant", assistant_message))
|
28 |
+
|
29 |
+
|
30 |
+
def format_prompt(self):
|
31 |
+
prompt = f"<|im_start|>assistant\n{self.system_message}<|im_end|>\n"
|
32 |
+
for role, message in self.conversation_history:
|
33 |
+
if message.strip():
|
34 |
+
prompt += f"<|im_start|>{role}\n{message}<|im_end|>\n"
|
35 |
+
# if role == "assistant":
|
36 |
+
# prompt += f"<|im_end|>\n"
|
37 |
+
prompt += "<|im_start|> assistant\n"
|
38 |
+
return prompt
|
39 |
|
40 |
def predict(self, user_message, temperature=0.4, max_new_tokens=70, top_p=0.99, repetition_penalty=1.9):
|
41 |
+
self.update_conversation_history(user_message, "")
|
42 |
+
prompt = self.format_prompt()
|
43 |
inputs = self.tokenizer(prompt, return_tensors='pt', add_special_tokens=False)
|
44 |
input_ids = inputs["input_ids"].to(self.model.device)
|
45 |
|
|
|
50 |
top_p=top_p,
|
51 |
repetition_penalty=repetition_penalty,
|
52 |
pad_token_id=self.tokenizer.eos_token_id,
|
53 |
+
do_sample=True
|
54 |
+
)
|
55 |
|
56 |
response = self.tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
57 |
+
self.update_conversation_history("", response)
|
58 |
return response
|
59 |
+
|
60 |
Orca_bot = OrcaChatBot(model, tokenizer)
|
61 |
|
62 |
def gradio_predict(user_message, system_message, max_new_tokens, temperature, top_p, repetition_penalty):
|
|
|
70 |
inputs=[
|
71 |
gr.Textbox(label="Your Message", type="text", lines=3),
|
72 |
gr.Textbox(label="Introduce a Character Here or Set a Scene (system prompt)", type="text", lines=2),
|
73 |
+
gr.Slider(label="Max new tokens", value=420, minimum=25, maximum=2056, step=1),
|
74 |
gr.Slider(label="Temperature", value=0.1, minimum=0.05, maximum=1.0, step=0.05),
|
75 |
gr.Slider(label="Top-p (nucleus sampling)", value=0.90, minimum=0.01, maximum=0.99, step=0.05),
|
76 |
gr.Slider(label="Repetition penalty", value=1.9, minimum=1.0, maximum=2.0, step=0.05)
|