Tonic commited on
Commit
f2227ae
·
1 Parent(s): 1337a55

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -12
app.py CHANGED
@@ -6,17 +6,17 @@ import torch
6
  import gradio as gr
7
  import sentencepiece
8
 
9
- title = "# ²Welcome to 🙋🏻‍♂️Tonic's🌷Tulu Chat!"
10
- description = """[allenai/tulu-2-dpo-7b](https://huggingface.co/allenai/tulu-2-dpo-7b) and larger Tulu-2 models are Instruct Llama Finetunes using the [mistralai/Mistral-7B](https://huggingface.co/mistralai/Mistral-7B-v0.1) recipe. You can use [allenai/tulu-2-13b](https://huggingface.co/allenai/tulu-2-13b) here via API using Gradio by scrolling down and clicking Use 'Via API' or privately by [cloning this space on huggingface](https://huggingface.co/spaces/Tonic1/TuluDemo?duplicate=true) See also the large model here : [allenai/tulu-2-dpo-70b](https://huggingface.co/allenai/tulu-2-dpo-70b) . [Join my active builders' server on discord](https://discord.gg/VqTxc76K3u). Let's build together!. [Add this Space as a discord bot to your server by clicking this link](https://discord.com/oauth2/authorize?client_id=1176628808212828231&scope=bot+applications.commands&permissions=326417525824). Big thanks to 🤗Huggingface Organisation for the🫂Community Grant"""
11
 
12
  os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:50'
13
  device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
14
- model_name = "allenai/tulu-2-dpo-13b"
15
- tokenizer = AutoTokenizer.from_pretrained("allenai/tulu-2-dpo-13b")
16
  model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
17
 
18
- class TuluChatBot:
19
- def __init__(self, model, tokenizer, system_message="You are 🌷Tulu, an AI language model created by Tonic-AI. You are a cautious assistant. You carefully follow instructions. You are helpful and harmless and you follow ethical guidelines and promote positive behavior."):
20
  self.model = model
21
  self.tokenizer = tokenizer
22
  self.system_message = system_message
@@ -25,7 +25,7 @@ class TuluChatBot:
25
  self.system_message = new_system_message
26
 
27
  def format_prompt(self, user_message):
28
- prompt = f"<|assistant|>\n {self.system_message}\n\n <|user|>{user_message}\n\n<|assistant|>\n"
29
  return prompt
30
 
31
  def predict(self, user_message, temperature, max_new_tokens, top_p, repetition_penalty, do_sample):
@@ -49,23 +49,23 @@ class TuluChatBot:
49
  return response
50
 
51
  def gradio_predict(user_message, system_message, max_new_tokens, temperature, top_p, repetition_penalty, do_sample):
52
- Tulu_bot.set_system_message(system_message)
53
  if not do_sample:
54
  max_length = 780
55
  temperature = 1.2
56
  top_p = 0.9
57
  repetition_penalty = 0.9
58
- response = Tulu_bot.predict(user_message, temperature, max_new_tokens, top_p, repetition_penalty, do_sample)
59
  return response
60
 
61
- Tulu_bot = TuluChatBot(model, tokenizer)
62
 
63
 
64
  with gr.Blocks(theme = "ParityError/Anime") as demo:
65
  gr.Markdown(title)
66
  gr.Markdown(description)
67
  with gr.Row():
68
- system_message = gr.Textbox(label="Optional 🌷Tulu Assistant Message", lines=2)
69
  user_message = gr.Textbox(label="Your Message", lines=3)
70
  with gr.Row():
71
  do_sample = gr.Checkbox(label="Advanced", value=False)
@@ -78,7 +78,7 @@ with gr.Blocks(theme = "ParityError/Anime") as demo:
78
  repetition_penalty = gr.Slider(label="Repetition penalty", value=1.9, minimum=1.0, maximum=2.0, step=0.05)
79
 
80
  submit_button = gr.Button("Submit")
81
- output_text = gr.Textbox(label="🌷Tulu Response")
82
 
83
  def process(user_message, system_message, max_new_tokens, temperature, top_p, repetition_penalty, do_sample):
84
  return gradio_predict(user_message, system_message, max_new_tokens, temperature, top_p, repetition_penalty, do_sample)
 
6
  import gradio as gr
7
  import sentencepiece
8
 
9
+ title = "# ²Welcome to 🙋🏻‍♂️Tonic's🧠🤌🏻Neural Chat (From Intel)!"
10
+ description = """Try out [Intel/neural-chat-7b-v3-1](https://huggingface.co/Intel/neural-chat-7b-v3-1) the Instruct Llama Finetune using the [mistralai/Mistral-7B](https://huggingface.co/mistralai/Mistral-7B-v0.1) recipe. You can use [Intel/neural-chat-7b-v3-1](https://huggingface.co/Intel/neural-chat-7b-v3-1) here via API using Gradio by scrolling down and clicking Use 'Via API' or privately by [cloning this space on huggingface](https://huggingface.co/spaces/TeamTonic/NeuralChat?duplicate=true) . [Join my active builders' server on discord](https://discord.gg/VqTxc76K3u). Let's build together!. """
11
 
12
  os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:50'
13
  device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
14
+ model_name = "Intel/neural-chat-7b-v3-1"
15
+ tokenizer = AutoTokenizer.from_pretrained("Intel/neural-chat-7b-v3-1")
16
  model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
17
 
18
+ class IntelChatBot:
19
+ def __init__(self, model, tokenizer, system_message="You are 🧠🤌🏻Neuro, an AI language model created by Tonic-AI. You are a cautious assistant. You carefully follow instructions. You are helpful and harmless and you follow ethical guidelines and promote positive behavior."):
20
  self.model = model
21
  self.tokenizer = tokenizer
22
  self.system_message = system_message
 
25
  self.system_message = new_system_message
26
 
27
  def format_prompt(self, user_message):
28
+ prompt = f"### System:\n {self.system_message}\n ### User:\n{user_message}\n### Assistant:\n"
29
  return prompt
30
 
31
  def predict(self, user_message, temperature, max_new_tokens, top_p, repetition_penalty, do_sample):
 
49
  return response
50
 
51
  def gradio_predict(user_message, system_message, max_new_tokens, temperature, top_p, repetition_penalty, do_sample):
52
+ Intel_bot.set_system_message(system_message)
53
  if not do_sample:
54
  max_length = 780
55
  temperature = 1.2
56
  top_p = 0.9
57
  repetition_penalty = 0.9
58
+ response = Intel_bot.predict(user_message, temperature, max_new_tokens, top_p, repetition_penalty, do_sample)
59
  return response
60
 
61
+ Intel_bot = IntelChatBot(model, tokenizer)
62
 
63
 
64
  with gr.Blocks(theme = "ParityError/Anime") as demo:
65
  gr.Markdown(title)
66
  gr.Markdown(description)
67
  with gr.Row():
68
+ system_message = gr.Textbox(label="Optional 🧠🤌🏻NeuralChat Assistant Message", lines=2)
69
  user_message = gr.Textbox(label="Your Message", lines=3)
70
  with gr.Row():
71
  do_sample = gr.Checkbox(label="Advanced", value=False)
 
78
  repetition_penalty = gr.Slider(label="Repetition penalty", value=1.9, minimum=1.0, maximum=2.0, step=0.05)
79
 
80
  submit_button = gr.Button("Submit")
81
+ output_text = gr.Textbox(label="🧠🤌🏻NeuralChat Response")
82
 
83
  def process(user_message, system_message, max_new_tokens, temperature, top_p, repetition_penalty, do_sample):
84
  return gradio_predict(user_message, system_message, max_new_tokens, temperature, top_p, repetition_penalty, do_sample)